Constrained Polynomial Zonotope
A constrained polynomial zonotope is defined as
$$\mathcal{CPZ} := \bigg\{ c + \sum_{i=1}^h \bigg( \prod_{k=1}^p \alpha_k^{E_{(k,i)}} \bigg) G_{(\cdot,i)} + \sum_{j=1}^d \beta_j G_{I(\cdot,j)} \, \bigg|
\sum_{i=1}^q \bigg( \prod_{k=1}^p \alpha_k^{R_{(k,i)}} \bigg) A_{(\cdot,i)} = b, \alpha_k, \beta_j \in [-1,1] \bigg\}. $$
Constrained polynomial zonotopes can describe non-convex sets.
More information in Section 2.2.1.6 in the CORA manual.