Polynomial Zonotope

In CORA, polynomial zonotopes are instantiated by
% pZ = polyZonotope(c,G,GI,E);
where c is the start point, G is the generator matrix with dependent factors, GI is the generator matrix with independent factors, and E is the exponent matrix.
Example:
% initialize polynomial zonotope
c = [4; 4];
G = [2 1 2; 0 2 2];
GI = [1; 0];
E = [1 0 3; 0 1 1];
pZ = polyZonotope(c,G,GI,E);
 
% plot polynomial zonotope
plot(pZ);
For more information, type
help polyZonotope
polyZonotope - object constructor for polynomial zonotopes Definition: see CORA manual, Sec. 2.2.1.5. Syntax: obj = polyZonotope(pZ) obj = polyZonotope(c) obj = polyZonotope(c,G) obj = polyZonotope(c,G,GI) obj = polyZonotope(c,[],GI) obj = polyZonotope(c,G,GI,E) obj = polyZonotope(c,G,[],E) obj = polyZonotope(c,G,GI,E,id) obj = polyZonotope(c,G,[],E,id) Inputs: pZ - polyZonotope object c - center of the polynomial zonotope (dimension: [nx,1]) G - generator matrix containing the dependent generators (dimension: [nx,N]) GI - generator matrix containing the independent generators (dimension: [nx,M]) E - matrix containing the exponents for the dependent generators (dimension: [p,N]) id - vector containing the integer identifiers for the dependent factors (dimension: [p,1]) Outputs: obj - polyZonotope object Example: c = [0;0]; G = [2 0 1;0 2 1]; GI = [0;0.5]; E = [1 0 3;0 1 1]; pZ = polyZonotope(c,G,GI,E); plot(pZ,[1,2],'FaceColor','r'); References: [1] Kochdumper, N., et al. (2020). Sparse polynomial zonotopes: A novel set representation for reachability analysis. IEEE Transactions on Automatic Control. Other m-files required: none Subfunctions: none MAT-files required: none See also: zonotope Documentation for polyZonotope Other uses of polyZonotope Folders named polyZonotope