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Abstract

The philosophy, architecture, and capabilities of the Continuous Reachability Analyzer
(CORA) are presented. CORA is a toolbox that integrates various vector and matrix set
representations and operations on these set representations as well as reachability algorithms
of various dynamic system classes. The software is designed such that set representations
can be exchanged without having to modify the code for reachability analysis. CORA has a
modular design, making it possible to use the capabilities of the various set representations
for other purposes besides reachability analysis. The toolbox is designed using the object-
oriented paradigm, such that users can safely use methods without concerning themselves
with detailed information hidden inside the object. Since the toolbox is written in MATLAB,
the installation and use is platform independent. CORA is released under GPLv3.
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1 INTRODUCTION

1 Introduction

This section shortly introduces the main concepts of the CORA toolbox, provides detailed
instructions for the installation, and summarizes the connections of CORA to other tools.

1.1 What’s new compared to CORA 2021?

It is our pleasure to present many new features for CORA 2021. The subsequent list is non-
exhaustive and unsorted:

• Verification of neural networks: CORA offers the verification of neural networks and
neural-network controlled systems. We provide the import of neural networks from vari-
ous common machine learning frameworks via the ONNX format (see Sec. 6.9). Further
information about our approach can be found in [1].

• Improved ellipsoid class: CORA now exploits degeneracy of sets to accelerate the
computation and to improve the tightness of results. Furthermore, we directly model all
optimization problems for ellipsoidal operations (requires either MOSEK or SDPT3 to be
installed), which greatly improves runtime.

• Hybrid systems extension: The modeling capabilities for hybrid automata and parallel
hybrid automata have been enhanced: Reset functions can now depend on inputs, synchro-
nization labels have been introduced, and ... Internal checks ensure the correctness of the
CORA model. Additionally, the spaceeex2cora converter has been extended to cover the
new functionality and updated display functions provide the user with a concise overview
of a hybrid automaton on the command window.

• Verification of temporal logic specifications: Signal Temporal Logic formulae (STL)
can be defined using the novel stl class. This allows for a verification of STL formulae
using Reachset Temporal Logic (RTL) [2] when STL objects are passed to reach functions
as specifications.

• Conversion of IEEE busses: A new converter enables the conversion of IEEE busses
to CORA models.

• Miscellaneous: Minor improvements have been made in various parts of the code: Plot
functions now support 1D projections, some basic functionality runs more efficiently, stan-
dardized input argument validation and more accurate error messages enhance the respon-
siveness, and more unit tests ensure greater reliability.

1.2 Philosophy

TheCOntinuousReachability Analyzer (CORA)1 is a MATLAB toolbox for prototypical design
of algorithms for reachability analysis. The toolbox is designed for various kinds of systems with
purely continuous dynamics (linear systems, nonlinear systems, differential-algebraic systems,
parameter-varying systems, etc.) and hybrid dynamics combining the aforementioned continuous
dynamics with discrete transitions. Let us denote the continuous part of the solution of a hybrid
system for a given initial discrete state by χ(t;x0, u(·), p), where t ∈ R is the time, x0 ∈ Rn is
the continuous initial state, u(t) ∈ Rm is the system input at t, u(·) is the input trajectory, and
p ∈ Rp is a parameter vector. The continuous reachable set at time t = tf can be defined for a
set of initial states X0, a set of input values U(t), and a set of parameter values P, as

Re(tf ) =
{
χ(tf ;x0, u(·), p) ∈ Rn

∣∣x0 ∈ X0,∀t : u(t) ∈ U(t), p ∈ P
}
.

1https://cora.in.tum.de/
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CORA mainly supports over-approximative computation of reachable sets since (a) exact reach-
able sets cannot be computed for most system classes [3] and (b) over-approximative compu-
tations allow for safety verification. Thus, CORA computes over-approximations for particular
points in time R(t) ⊇ Re(t) and for time intervals: R([t0, tf ]) =

⋃
t∈[t0,tf ]

R(t).

CORA also enables the construction of an individual reachable set computation in a relatively
short amount of time. This is achieved by the following design choices:

• CORA is programmed in MATLAB, which is a script-based programming environment.
Since the code does not have to be compiled, one can stop the program at any time and
directly see the current values of variables. This makes it especially easy to understand
the workings of the code and to debug new code.

• CORA is an object-oriented toolbox that uses modularity, operator overloading, inheri-
tance, and information hiding. One can safely use existing classes and just adapt classes
of interest without redesigning the whole code. Operator overloading facilitates writing
formulas that look almost identical to the ones derived in scientific papers and thus reduces
programming errors. Most of the information of each class is hidden and not relevant to
users of the toolbox. Most classes use identical methods so that set representations and
dynamic systems can be effortlessly replaced.

• CORA interfaces with the established toolbox MPT2, which is also written in MATLAB.
Results of CORA can be easily transferred to this toolbox and vice versa. We are currently
supporting version 2 and 3 of the MPT.

Of course, it is also possible to use CORA as it is, to perform reachability analysis.

Please be aware of the fact that outcomes of reachability analysis heavily depend on the cho-
sen parameters for the analysis (those parameters are listed in Sec. 4.1.1). Improper choice
of parameters can result in an unacceptable over-approximation although reasonable results
could be achieved by using appropriate parameters. Thus, self-tuning of the parameters for
reachability analysis, as it is already done by the adaptive algorithm for linear and nonlinear
systems, is investigated as part of ongoing and future work.

Since this manual focuses on the presentation of the capabilities of CORA, no other tools for
reachability analysis of continuous and hybrid systems are reviewed. A list of related tools is
presented in [4–6].

1.3 Installation

CORA does not require any installation, except that the path for CORA has to be set in
MATLAB. In addition, CORA uses the following third-party toolboxes that have to be installed:

• MPT: The Multi Parametric Toolbox is designed for parametric optimization, compu-
tational geometry, and model predictive control. CORA only uses the computational
geometry capabilities for polytopes.

• YALMIP: The YALMIP toolbox [7] is designed for solving optimization problems of
various types. CORA requires the YALMIP toolbox along with at least one supported
Semi-definite Program (SDP) solver.

• MOSEK3, SDPT34: To use the ellipsoid set representation more efficiently, consider
installing either the MOSEK or SDPT3 solver. Note: If you want to use MOSEK, please

2http://control.ee.ethz.ch/~mpt/2/
3https://www.mosek.com/
4https://blog.nus.edu.sg/mattohkc/softwares/sdpt3/
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make sure that you do not override the built-in MATLAB optimization routines (linprog,
quadprog, etc.), as this will break certain parts of CORA.

With the installation routine described in https://www.mpt3.org/Main/Installation, the
MPT and YALMIP toolboxes can be easily installed together.

In addition to the third-party toolboxes CORA requires the following MATLAB toolboxes:

• Symbolic math toolbox

• Optimization toolbox

• Statistics toolbox

• Multiple precision toolbox from the Mathworks File Exchange (only required for
Krylov sub-space methods)

To check whether the core functionality of CORA has been set up correctly, run the standard
test suite runTestSuite which should take about 5 minutes. The installation of all required
toolboxes can be checked individually by running test requiredToolboxes.

Additionally, for the verification of neural networks (Sec. 4.2.9 and Sec. 6.9), the following
toolboxes are required to import neural networks trained in MATLAB or read neural networks
from the widely used ONNX format.

• Deep learning toolbox

• Deep learning toolbox converter for ONNX model format

Note: You are not required to install these toolboxes to use CORA if you do not use neural
network verification.

To check whether the neural network functionality has been set up correctly, run the test suite
runTestSuite nn.

1.4 Connections to and from SpaceEx

As part of the EU project Unifying Control and Verification of Cyber-Physical Systems (Un-
CoVerCPS) the tools CORA and SpaceEx [8] have been integrated to a certain extent.

Importing and Exporting SpaceEx Models

CORA can read SpaceEx models as described in Sec. 7 and CORA models can be exported
as SpaceEx models as detailed in Sec. 4.1.6. This has two major benefits: First, SpaceEx has
become the quasi-standard for model exchange between tools for formal verification of hybrid
systems (see ARCH friendly competition in Sec. 1.5) so that many model files in this format are
available. Second, SpaceEx offers a graphical model editor which is briefly presented in Sec. 7.1,
helping non-experts to easily model hybrid systems.

CORA/SX

CORA code for computing reachable sets of nonlinear systems is available in the SpaceEx
extension CORA/SX as C++ code. CORA has several implementations to compute reachable
sets of nonlinear systems—in the first CORA/SX version, the most basic, but very efficient
algorithm from [9] has been implemented. Also, the zonotope class from CORA is available
in CORA/SX, making efficient computations for switched linear systems possible as described
in [10].
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1.5 CORA@ARCH

The ARCH5 friendly competition is the main platform for comparing the results of different
reachability tools on multiple challenging benchmark problems. CORA has participated in the
ARCH friendly competitions since the first competition in 2017. Results of the competition
can be found in the yearly ARCH proceedings [11–13]. In particular, CORA has participated
in the linear systems category [14–17] and the nonlinear systems category [18–21]; CORA/SX
has participated in the same categories in 2018 [15, 19] and in the linear systems category in
2019 [16].

All results from all tools participating in the friendly competitions can be re-computed using the
ARCH repeatability packages, which are publicly available: gitlab.com/goranf/ARCH-COMP/.

The results from the last ARCH competition can be found in the CORA toolbox at exam-
ples/ARCHcompetition/. We also published the results as Code Ocean capsules6, which allows
everyone to conveniently reproduce the results online without the need to install anything.

More information on the ARCH workshops can be found here: cps-vo.org/group/ARCH.

1.6 Architecture

The architecture of CORA can essentially be grouped into the parts presented in Fig. 1 using a
UML7 class diagram: Classes for set representations (Sec. 2), classes for matrix set representa-
tions (Sec. 3), classes for the analysis of continuous dynamics (Sec. 4.2), classes for the analysis
of hybrid dynamics (Sec. 4.3), and classes for the abstraction to discrete systems (Sec. 5).

All classes for set representations inherit some common properties and functionality from the
parent class contSet (see Fig. 1). Similary, all classes for continuous dynamics inherit from the
parent class contDynamics (see Fig. 1).

For hybrid systems, the class diagram in Fig. 1 shows that parallel hybrid automata (class
parallelHybridAutomaton) consist of several instances of hybrid automata (class
hybridAutomaton), which in turn consist of several instances of the location class. Each
location object has continuous dynamics (classes inheriting from contDynamics), several tran-
sitions (class transition), and a set representation (classes inheriting from contSet) to describe
the invariant of the location. Each transition has a set representation to describe the guard set
enabling a transition to the next discrete state. More details on the semantics of those compo-
nents can be found in Sec. 4.3.

Note that some classes subsume the functionality of other classes. For instance, nonlinear
differential-algebraic systems (class nonlinDASys) are a generalization of nonlinear systems
(class nonlinearSys). Less general systems are not removed because very efficient algorithms
exist for those systems that are not applicable to more general systems.

1.7 Unit Tests

To ensure that all functions in CORA work as they should, CORA contains a number of unit
tests in the folder unitTests. Those unit tests are executed by different test suits:

• runTestSuite: This test suite should always be executed after installing CORA or updat-
ing MATLAB/CORA/MPT and runs all basic tests. All files whose function name starts
with test are executed.

5Applied Verification for Continuous and Hybrid Systems
6see https://codeocean.com/capsule/2113947/tree and https://codeocean.com/capsule/1267711/tree
7http://www.uml.org/
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contDynamics

linearSys (Sec. 4.2.1)

linearSysDT (Sec. 4.2.3)
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Figure 1: Unified Modeling Language (UML) class diagram of CORA.

• runTestSuite INTLAB: This test suite compares the interval arithmetic results with those
of INTLAB8. To successfully execute those tests, INTLAB has to be installed. The tests
are randomized and for each function, thousands of samples are generated. Simple, non-

8http://www.ti3.tu-harburg.de/intlab/
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randomized tests for interval arithmetic are already included in runTestSuite. This test
suite executes all files whose function name starts with testINTLAB .

• runTestSuite longDuration: This test suite contains test functions that take a long time
to compute. Running this test suite may take several hours. This test suite executes all
files whose function name starts with testLongDuration .

• runTestSuite Mosek: This test suite runs all files requiring the Mosek solver9, i.e., those
that start with testMosek .

• runTestSuite MP: This test suite runs all files requiring the multiple precision toolbox10,
i.e., those that start with testMP .

• runTestSuite SDPT3: This test suite runs all files requiring the SDPT3 solver11, i.e., those
that start with testSDPT3 .

• runTestSuite nn: This test suite runs all files related to the verification of neural net-
works, i.e., those indicated by nn and neurNetContrSys.

Note: According to our experience, results may vary numerically depending on the installed
MATLAB version. CORA 2022 has been tested using MATLAB R2022a.

9https://www.mosek.com
10https://www.mathworks.com/matlabcentral/fileexchange/6446-multiple-precision-toolbox-for-matlab
11https://blog.nus.edu.sg/mattohkc/softwares/sdpt3
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2 Set Representations and Operations

This section introduces the set representations and set operations that are implemented in the
CORA toolbox.

2.1 Set Operations

The reachability algorithms implemented in CORA rely on set-based computation. One major
design principle is that the same standard set operations are implemented for all set represen-
tations so that algorithms can be executed with different set representations. In this section,
we introduce the most important set operations, which are demonstrated by examples involving
concrete set representations. Set representations are later detailed in Sec. 2.2; however, in order
to follow the subsequent examples, it suffices to consider the sets as arbitrary continuous sets.

If a set representation is not closed under an operation, an over-approximation is returned (see
Tab. 1).

2.1.1 Basic Set Operations

We first consider basic operations on sets.

2.1.1.1 mtimes

The method mtimes, which overloads the * operator, implements the linear map of a set. Given
a set S ⊂ Rn, the linear map is defined as

mtimes(M,S) = M ⊗ S = {Ms | s ∈ S}, M ∈ Rw×n.

It is also possible to consider a set of matrices M ⊂ Rw×n instead of a fixed-value matrix
M ∈ Rw×n (see Sec. 3.1.1). Let us demonstrate the method mtimes by an example:

% set and matrix

S = zonotope([0 1 1 0; ...

0 1 0 1]);

M = [1 0; -1 0.5];

% linear transformation

res = M * S;

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

x1

x
2

S

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

x1

x
2

M ⊗ S

2.1.1.2 plus

The method plus, which overloads the + operator, implements the Minkowski sum of two sets.
Given two sets S1,S2 ⊂ Rn, the Minkowski sum is defined as

plus(S1,S2) = S1 ⊕ S2 = {s1 + s2 | s1 ∈ S1, s2 ∈ S2}.

Let us demonstrate the method plus by an example:
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% set S1 and S2

S1 = zonotope([0 0.5 1; ...

0 1 0]);

S2 = zonotope([0 1 0; ...

0 0 1]);

% Minkowski sum

res = S1 + S2;

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

x1

x
2

S1 and S2

-3 -2 -1 0 1 2 3
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0

1

2

3

x1

x
2

S1 ⊕ S2

2.1.1.3 cartProd

The method cartProd implements the Cartesian product of two sets. Given two sets S1 ⊂ Rn

and S2 ⊂ Rw, the Cartesian product is defined as

cartProd(S1,S2) = S1 × S2 = {[s1 s2]
T | s1 ∈ S1, s2 ∈ S2}.

Let us demonstrate the method cartProd by an example:

% set S1 and S2

S1 = interval(-2,1);

S2 = interval(-1,2);

% Cartesian product

res = cartProd(S1,S2)

Command Window:

res =

[-2.00000,1.00000]

[-1.00000,2.00000]

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

x1

x
2

S1 × S2

2.1.1.4 convHull

The method convHull implements the convex hull of two sets. Given two sets S1,S2 ⊂ Rn, the
convex hull is defined as

convHull(S1,S2) = {λs1 + (1− λ)s2 | s1, s2 ∈ S1 ∪ S2, λ ∈ [0, 1]} .

Furthermore, given a single non-convex set S ⊂ Rn, convHull(S) computes the convex hull of
the set. Let us demonstrate the method convHull by an example:

% set S1 and S2

S1 = conZonotope([1.5 1 0; ...

1.5 0 1]);

S2 = conZonotope([-1.5 1 0; ...

-1.5 0 1]);

% convex hull

res = convHull(S1,S2);

-3 -2 -1 0 1 2 3
-3
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2.1.1.5 quadMap

The method quadMap implements the quadratic map of a set. Given a set S ⊂ Rn, the quadratic
map is defined as

quadMap(S, Q) = {x | x(i) = sTQis, s ∈ S, i = 1 . . . w}, Qi ∈ Rn×n,

where x(i) is the i-th value of the vector x. If quadMap is called with two different sets S1,S2 ⊂ Rn

as input arguments, the method computes the mixed quadratic map:

quadMap(S1,S2, Q) = {x | x(i) = sT1 Qis2, s1 ∈ S1, s2 ∈ S2, i = 1 . . . w}, Qi ∈ Rn×n.

Let us demonstrate the method quadMap by an example:

% set and matrices

S = polyZonotope([0;0], ...

[1 1;1 0], ...

[],eye(2));

Q{1} = [0.5 0.5; 0 -0.5];

Q{2} = [-1 0; 1 1];

% quadratic map

res = quadMap(S,Q); -3 -2 -1 0 1 2 3
-3
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3
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0
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2.1.1.6 and

The method and, which overloads the & operator, implements the intersection of two sets. Given
two sets S1,S2 ⊂ Rn, the intersection is defined as

and(S1,S2) = S1 ∩ S2 = {s | s ∈ S1, s ∈ S2}.

Let us demonstrate the method and by an example:

% set S1 and S2

S1 = interval([-1;-1],[2;2]);

S2 = interval([-2;-2],[1;1]);

% intersection

res = S1 & S2;

-3 -2 -1 0 1 2 3
-3
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3
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Table 1: Relations between set representations and set operations. The shortcuts e (exact
computation) and o (over-approximation) are used. The symbol e* indicates that the operation
is exact if no independent generators (see Sec. 2.2.1.5 and Sec. 2.2.1.6 for details) are used.

Set Rep.
Lin.
Map

Mink.
Sum

Cart.
Prod.

Conv.
Hull

Quad.
Map

Inter-
section

Union

interval o e e o e o
zonotope e e e o o o o
mptPolytope e e e e e o
conZonotope e e e e o e o
zonoBundle e e e e o e o
ellipsoid e o o o o
capsule e o
taylm e e e
polyZonotope e e e e* e*
conPolyZono e e e e* e* e* e*

2.1.1.7 or

The method or, which overloads the | operator, implements the union of two sets. Given two
sets S1,S2 ⊂ Rn, their union is defined as

or(S1,S2) = S1 ∪ S2 = {s | s ∈ S1 ∨ s ∈ S2}.

Let us demonstrate the method or by an example:

% set S1 and S2

S1 = interval([-2;-1],[2;2]);

S2 = interval([-2;-2],[2;1]);

% union

res = S1 | S2;

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3
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-1

0

1

2

3

2.1.1.8 minkDiff

The method minkDiff implements the Minkowski difference of two sets. Given two sets S1,S2 ⊂
Rn, their Minkowski difference is defined as

minkDiff(S1,S2) = {s ∈ Rn | s⊕ S2 ⊆ S1}.

Let us demonstrate the method minkDiff by an example:
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% set 1 and set 2

S1 = zonotope( ...

[0.5 0.5 -0.3 1 0; ...

0 0.2 1 0 1]);

S2 = interval([-1;-1],[1;1]);

% Minkowski difference

res = minkDiff(S1,S2);

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

2.1.2 Predicates

Predicates check if sets fulfill certain properties and return either true or false.

2.1.2.1 contains

The method contains checks if a set is contains another set. Given two sets S1,S2 ⊂ Rn, the
method contains is defined as

contains(S1,S2) =

{
true, S2 ⊆ S1

false, otherwise

In addition, the method contains can be applied to check if a point or a point cloud (represented
as a matrix whose columns are individual points) is located inside a set. For point clouds, we
return the result of the containment check for each individual point in a matrix. Since contain-
ment checks can be computationally expensive, we implemented over-approximative algorithms
for some set representations (see Tab. 2). If the over-approximative algorithm returns true, it
is guaranteed that S2 is contained in S1. However, if the over-approximative algorithm returns
false, the set S2 could still be contained in S1. To execute the over-approximative instead of
the exact algorithm, one has to add the flag ’approx’:

res = contains(S1,S2,’approx’);

Let us demonstrate the method contains by an example:

% sets S1,S2, and point p

S1 = zonotope([0 1 1 0; ...

0 1 0 1]);

S2 = interval([-1;-1],[1;1]);

p = [0.5;0.5];

% containment check

res1 = contains(S1,S2)

res2 = contains(S1,p)

Command Window:

res1 = true

res2 = true
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2.1.2.2 isIntersecting

The method isIntersecting checks if two sets intersect. Given two sets S1,S2 ⊂ Rn, the
method isIntersecting is defined as

isIntersecting(S1,S2) =

{
true, S1 ∩ S2 6= ∅
false, otherwise

17
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Table 2: Containment checks S2 ⊆ S1 implemented by the method contains(S1,S2) in CORA.
The column headers represent the set S1 and the row headers represent the set S2. The shortcuts
e (exact check) and o (over-approximation) are used. If both, an exact and an over-approximative
algorithm are implemented, we write e/o.

I Z P cZ zB E C pZ cPZ halfspace levelSet

interval (I) e e/o e e/o e/o e e o o e o
zonotope (Z) e e/o e e/o e/o e e o o e o
mptPolytope (P) e e/o e e/o e/o e e o o e o
conZonotope (cZ) e e/o e e/o e/o e e o o e o
zonoBundle (zB) e e/o e e/o e/o e e o o e o
ellipsoid (E) e e e e e e o o o e o
capsule (C) e e e e e o e o o e o
polyZonotope (pZ) o o o o o o o o o o o
conPolyZono (cPZ) o o o o o o o o o o o
taylm o o o o o o o o o o o

Since intersection checks can be computationally expensive, we implemented over-approximative
algorithms for some set representations (see Tab. 3). If the over-approximative algorithm returns
false, it is guaranteed that the sets do not intersect. However, if the over-approximative
algorithm returns true, the sets could possibly not intersect. To execute the over-approximative
instead of the exact algorithm, one has to add the flag ’approx’:

res = isIntersecting(S1,S2,’approx’);

Let us demonstrate the method isIntersecting by an example:

% sets S1 and S2

S1 = interval([-1;-1],[2;2]);

S2 = interval([-2;-2],[1;1]);

% intersection check

res = isIntersecting(S1,S2)

Command Window:

res = true
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Table 3: Intersection checks implemented by the function isIntersecting(S1,S2) in CORA.
The shortcuts e (exact check) and o (over-approximation) are used. If both, an exact and an
over-approximative algorithm are implemented, we write e/o.

I Z P cZ zB E C tay pZ cPZ hs cHp ls

interval (I) e e/o e/o e/o e/o o o o o o e e/o o
zonotope (Z) e/o e/o e/o e/o e/o o o o o o e e/o o
mptPolytope (P) e/o e/o e e/o e/o o o o o o e e/o o
conZonotope (cZ) e/o e/o e/o e/o e/o o o o o o e e/o o
zonoBundle (zB) e/o e/o e/o e/o e/o o o o o o e e/o o
ellipsoid (E) o o o o o e o o o o e o o
capsule (C) o o o o o o e o o o e o o
taylm (tay) o o o o o o o o o o
polyZonotope (pZ) o o o o o o o o o o o
conPolyZono (cPZ) o o o o o o o o o o o o o
halfspace (hs) e e e e e e e o o o
conHyperplane (cHp) e/o e/o e/o e/o e/o o o o o o
levelSet (ls) o o o o o o o o o o
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2 SET REPRESENTATIONS AND OPERATIONS

2.1.2.3 isFullDim

The method isFullDim checks if a set is full-dimensional, that is, if the dimension of its affine
hull is equal to the dimension of its ambient space. Given a set S ⊂ Rn, the method isFullDim

is defined as

isFullDim(S) =
{
true, ∃x ∈ S, ǫ > 0 : x+ ǫB ⊆ S,
false, otherwise,

where B = {x | ||x||2 ≤ 1} ⊂ Rn is the unit ball. Let us demonstrate the method isFullDim by
an example:

% sets S1 and S2

S1 = zonotope([1 2 1;3 1 2]);

S2 = zonotope([1 2 1;3 4 2]);

% check if full-dimensional

res = isFullDim(S1)

res = isFullDim(S2)

Command Window:

res = true

res = false

2.1.2.4 isequal

The method isequal checks if two sets are identical. Optionally, a tolerance can be set to
reduce the effect of floating-point deviations. Given two sets S1,S2 ⊂ Rn, the method isequal

is defined as

isequal(S1,S2, tol) =

{
true, S1 = S2

false, otherwise

Let us demonstrate the method isequal by an example:

% sets S1 and S2

S1 = zonotope([0 1 1 0; ...

0 1 0 1]);

S2 = zonotope([0 1 1 0; ...

0 1 0 1]);

% equality check

res = isequal(S1,S2)

Command Window:

res = true

2.1.2.5 isempty

The method isempty checks if a set is empty. Given a set S ⊂ Rn, the method isempty is
defined as

isempty(S) =
{
true, S = ∅
false, otherwise

Let us demonstrate the method isempty by an example:
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% set S (intersection)

S1 = mptPolytope(...

[-1 -1;0 -1;0 1;1 1], ...

[-0.5; 0; 2; 2.5]);

S2 = mptPolytope(...

[-1 -1;0 -1;0 1;1 1], ...

[2.5; 2; 0; -0.5]);

S = S1 & S2;

% check if set is empty

res = isempty(S)

Command Window:

res = true
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2.1.3 Set Properties

In this subsection, we describe the methods that compute geometric properties of sets.

2.1.3.1 center

The method center returns the center of a set. Let us demonstrate the method center by an
example:

% set S

S = interval([-2;-2],[1;1]);

% compute center

res = center(S)

Command Window:

res =

-0.5000

-0.5000
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2.1.3.2 dim

The method dim returns the dimension of the ambient space of a set, that is, the dimension in
which a set is defined. Let us demonstrate the method dim by an example:

% set S

S = zonotope([0 1 0 2; ...

3 1 1 0; ...

1 1 0 1]);

% dimension of the set

res = dim(S)

Command Window:

res = 3

2.1.3.3 norm

The method norm returns the maximum norm value of the vector norm for points inside a set
S ⊂ Rn:

norm(S, p) = max
x∈S

‖x‖p , p ∈ {1, 2, . . . ,∞},
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where the p-norm ‖·‖p is defined as

‖x‖p =
( n∑

i=1

|xi|p
)1/p

.

Let us demonstrate the method norm by an example:

% set S

S = zonotope([-0.5 1.5 0; ...

-0.5 0 1.5]);

% norm of the set

res = norm(S,2)

Command Window:

res =

2.8284
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2.1.3.4 vertices

Given a set S ⊂ Rn, the method vertices computes the vertices v1, . . . , vq, vi ∈ Rn of the set:

[v1, . . . , vq] = vertices(S).

Please note that the computation of vertices can be computationally demanding for complex-
shaped and/or high-dimensional sets. Let us demonstrate the method vertices by an example:

% set S

S = interval([-2;-2], ...

[1;1]);

% compute vertices

V = vertices(S)

Command Window:

V =

1 1 -2 -2

1 -2 1 -2
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2.1.3.5 volume

The method volume returns the volume of a set. Let us demonstrate the method volume by an
example:

% set S

S = zonotope([0 1 1 0; ...

0 1 0 1]);

% volume of the set

res = volume(S)

Command Window:

res = 12
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2.1.4 Auxiliary Operations

In this subsection, we describe useful auxiliary operations.

2.1.4.1 cubMap

The method cubMap implements the cubic map of a set. Given a set S ⊂ Rn, the cubic map is
defined as

cubMap(S, Q) =

{
x

∣∣∣∣ x(i) =
n∑

j=1

s(j) (s
T Ti,j s), s ∈ S, i = 1 . . . w

}
, Ti,j ∈ Rn×n,

where x(i) is the i-th value of the vector x. If the corresponding set representation is not closed
under cubic maps, cubMap returns an over-approximation. If cubMap is called with three different
sets S1,S2,S3 ⊂ Rn as input arguments, the method computes the mixed cubic map:

cubMap(S1,S2,S3, Q) =

{
x

∣∣∣∣ x(i) =
n∑

j=1

s1(j) (s
T
2 Ti,j s3), s1 ∈ S1, s2 ∈ S2, s3 ∈ S3,

i = 1 . . . w

}
, Ti,j ∈ Rn×n,

Let us demonstrate the method cubMap by an example:

% set and matrices

S = polyZonotope([0;0], ...

[1 1;1 0], ...

[],eye(2));

T{1,1} = 0.4*[1 2; -1 2];

T{1,2} = 0.4*[-3 0; 1 1];

T{2,1} = 0.05*[2 0; -2 1];

T{2,2} = 0.05*[-3 0; -21 -1];

% cubic map

res = cubMap(S,T);
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2.1.4.2 enclose

The method enclose computes an enclosure of a set and its linear transformation. Given the
sets S1,S2 ∈ Rn and the matrix M ∈ Rn×n, enclose computes the set

enclose(S1,M,S2) = {λs1 + (1− λ)(Ms1 + s2) | s1 ∈ S1, s2 ∈ S2, λ ∈ [0, 1]} . (1)

If the set as defined in (1) cannot be computed exactly for the corresponding set representation,
enclose returns an over-approximation. For convenience, the method can also be called with
only two input arguments:

enclose(S1,S3) = enclose(S1,M,S2), S3 = (M ⊗ S1)⊕ S2.

Let us demonstrate the method enclose by an example:
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% sets S1,S2 and matrix M

S1 = polyZonotope([1.5;1.5], ...

[1 0;0 1], ...

[],eye(2));

S2 = [0.5;0.5];

M = [-1 0;0 -1];

% apply method enclose

S3 = M*S1 + S2;

res = enclose(S1,M,S2);

res = enclose(S1,S3);
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2.1.4.3 enclosePoints

Given a point cloud P = [p1, . . . , pm], pi ∈ Rn, the static method enclosePoints computes a
set S ⊂ Rn that tightly encloses the point cloud:

S = enclosePoints
(
[p1, . . . , pm]

)
, ∀i = 1, . . . ,m : pi ∈ S

Let us demonstrate the method enclosePoints by an example:

% random point cloud

mu = [0 0];

sigma = [0.3 0.4; 0.4 1];

points = mvnrnd(mu,sigma,100)’;

% compute enclosing set

S = ellipsoid.enclosePoints(points);
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2.1.4.4 generateRandom

The static method generateRandom randomly generates a set of the given set representation.
If no input arguments are provided, the method generates a random set of arbitrary dimension.
The desired dimension and other specifications for the set can be provided by name-value pairs:

S = generateRandom(’Dimension’, n), S ⊂ Rn.

The additionally supported name-value pairs of the method generateRandom for each class are
detailed in their respective function description. Let us demonstrate the method generateRandom
by an example:
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% generate random set

S = interval.generateRandom(...

’Dimension’,2);

Command Window:

S =

[-1.85276,1.26987]

[-0.94208,0.31833]
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2.1.4.5 linComb

The method linComb implements the linear combination of two sets. Given two sets S1,S2 ⊂ Rn,
their linear combination is defined as

linComb(S1,S2) = {λs1 + (1− λ)s2 | s1 ∈ S1, s2 ∈ S2, λ ∈ [0, 1]} .

Note that for convex sets the linear combination is identical to the convex hull (see Sec. 2.1.1.4).
For non-convex sets, however, the two operations differ. Let us demonstrate the method linComb

by an example:

% set S1 and S2

S1 = polyZonotope([0.5;0.5],...

[1 1;-1 1],...

[],[1 2]);

S2 = zonotope([-1.5;-1.5],...

[1 0;0 1]);

% linear combination

res = linComb(S1,S2);
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linComb(S1,S2)

2.1.4.6 randPoint

The method randPoint returns random points located inside a set. Given a set S ⊂ Rn, the
method randPoint generates random points p = [p1, . . . , pN ] ∈ Rn×N with p1, . . . , pN ∈ S:

p = randPoint(S),
p = randPoint(S, N),

p = randPoint(S, N, type),

where N ∈ N>0 is the desired number of points, and type specifies the desired type random
points. The setting type = ’extreme’ aims to generate points close to or on the boundary of
the set, while type = ’standard’ generates arbitrary points within the set. The default values
are N = 1 and type = ’standard’. Let us demonstrate the method randPoint by an example:
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% set S

S = zonotope([0 1 1 0; ...

0 1 0 1]);

% random point

p = randPoint(S)

Command Window:

p =

-1.3538

-1.2519
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2.1.4.7 reduce

The method reduce encloses a set by another set with a smaller representation size. Given a
set S ⊂ Rn, the method reduce computes

reduce(S, method, order) = S, S ⊆ S, (2)

where the representation size of S is smaller than the one of S. The parameter method in (2) is
a string that specifies the algorithm to be applied, see Tab. 4. The parameter order in (2) is a
measure for the desired representation size of the resulting set S. Currently, the method reduce

is implemented for the zonotopic set representations zonotope (see Sec. 2.2.1.1), conZonotope
(see Sec. 2.2.1.9), polyZonotope (see Sec. 2.2.1.5), and probZonotope (see Sec. 2.2.1.10), where
order = p

n is defined as the division of the number of generator vectors p by the system dimension
n. Let us demonstrate the method reduce by an example:

% set S

S = zonotope([0 1 1 0; ...

0 1 0 1]);

% reduce rep. size

S_ = reduce(S,’pca’,1);
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Table 4: Reduction techniques for zonotopic set representations.

technique primary use literature

cluster Reduction to low order by clustering generators [22, Sec. III.B]
combastel Reduction of high to medium order [23, Sec. 3.2]
constOpt Reduction to low order by optimization [22, Sec. III.D]
girard Reduction of high to medium order [24, Sec. .4]
methA Reduction to low order by volume minimization (A) Meth. A, [25, Sec. 2.5.5]
methB Reduction to low order by volume minimization (B) Meth. B, [25, Sec. 2.5.5]
methC Reduction to low order by volume minimization (C) Meth. C, [25, Sec. 2.5.5]
scott Reduction to low order [26, Appendix]
pca Reduction of high to medium order using PCA [22, Sec. III.A]
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2.1.4.8 supportFunc

The method supportFunc computes the support function for a specific direction. Given a set
S ∈ Rn and a vector l ∈ Rn, the support function is defined as

supportFunc(S, l) = max
x∈S

lT x.

The function also supports the computation of the lower bound, which can be calculated using
the flag ’lower’:

supportFunc(S, l, ’lower’) = min
x∈S

lT x.

Additionally, one can return both the lower and upper bounds by using the flag ’range’. Let
us demonstrate the method supportFunc by an example:

% set S and vector l

S = zonotope([0 1 1 0; ...

0 1 0 1]);

l = [1;2];

% compute support function

res = supportFunc(S,l)

Command Window:

res = 6
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2.1.4.9 plot

The method plot visualizes a 2-dimensional projection of the boundary of a set. Given a set
S ⊂ Rn, the method plot supports the following syntax:

han = plot(S)
han = plot(S, dims)
han = plot(S, dims, linespec),
han = plot(S, dims, namevaluepairs),

where han is a handle to the plotted MATLAB graphics object and the additional input argu-
ments are defined as

• dims: Integer vector dims ∈ N2
≤n specifying the dimensions for which the projection is

visualized (default value: dim = [1 2]).

• linespec: (optional) line specifications, e.g., ’--*r’, as supported by MATLAB12.

• namevaluepairs: (optional) further specifications as name-value pairs, e.g., ’LineWidth’,2
and ’FaceColor’,[.5 .5 .5], as supported by MATLAB. If the plot is not filled, these
are the built-in Line Properties13, if the plot is filled, they correspond to the Patch Prop-
erties14.

Let us demonstrate the method plot by an example:

12https://de.mathworks.com/help/matlab/ref/linespec.html
13https://de.mathworks.com/help/matlab/ref/matlab.graphics.chart.primitive.line-properties.html
14https://de.mathworks.com/help/matlab/ref/matlab.graphics.primitive.patch-properties.html
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% set S

S = zonotope([0 1 1 0; ...

0 1 2 1; ...

0 1 0 1]);

% visualization

plot(S,[1,3],’r’);
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2.1.4.10 project

The method project projects a set to a lower-dimensional, axis-aligned subspace. Given a set
S ⊂ Rn and a vector of subspace indices dims ∈ Nm

≤n, the method project returns

project(S, dims) =
{
[s(dims(1)), . . . , s(dims(m))]

∣∣∣ s ∈ S
}
⊂ Rm,

where s(i) denotes the i-th entry of vector s. Let us demonstrate the method project by an
example:

% set S

S = interval([1;2;5;0], ...

[3;3;7;2]);

% projection

res = project(S,[1 3 4]);

Command Window:

res =

[1.00000,3.00000]

[5.00000,7.00000]

[0.00000,2.00000]
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2.2 Set Representations

The basis of any efficient reachability analysis is an appropriate set representation. On the one
hand, the set representation should be general enough to describe the reachable sets accurately;
on the other hand, it is crucial that the set representation facilitates efficient and scalable
operations on them. CORA provides a wide range of set representations that are explained in
detail in this section. Table 5 shows the supported conversions between set representations. In
order to convert a set, it is sufficient to pass the current set to the class constructor of the target
set representation, as demonstrated by the following example:

% create zonotope object

Z = zonotope([1 2 1;0 1 -1]);

% convert to other set representations

I = interval(Z); % over-approximative conversion to an interval

P = mptPolytope(Z); % exact conversion to polytope

Table 5: Set conversions supported by CORA. The row headers represent the original set repre-
sentation and the column headers the target set representation after conversion. The shortcuts
e (exact conversion) and o (over-approximation) are used.

Z zB pZ cPZ cZ P I tay C E

zonotope (Z, Sec. 2.2.1.1) - e e e e e o e o o
zonoBundle (zB, Sec. 2.2.1.8) o - e e e e o
polyZonotope (pZ, Sec. 2.2.1.5) o - e o o o o
conPolyZono (cPZ, Sec. 2.2.1.6) o o o - o o o o o o
probZonotope (probZ, Sec. 2.2.1.10) o
conZonotope (cZ, Sec. 2.2.1.9) o e e e - e o
mptPolytope (P, Sec. 2.2.1.4) e e e e - o
interval (I, Sec. 2.2.1.2) e e e e e e - o o
taylm (tay, Sec. 2.2.3.1) e o -
capsule (C, Sec. 2.2.1.7) o e o -
ellipsoid (E, Sec. 2.2.1.3) o e o -

2.2.1 Basic Set Representations

We first introduce basic set representations predominantly used to represent reachable sets.

2.2.1.1 Zonotopes

A zonotope Z ⊂ Rn is defined as

Z :=

{
c+

p∑

i=1

βig
(i)

∣∣∣∣ βi ∈ [−1, 1]

}
, (3)

where c ∈ Rn is the center and g(i) ∈ Rn are the generators. The zonotope order ρ is defined as
ρ = p

n and represents a dimensionless measure for the representation size.

Zonotopes are represented in CORA by the class zonotope. An object of class zonotope can
be constructed as follows:

Z = zonotope(c,G),

Z = zonotope(Z),

where G = [g(1), . . . , g(p)], Z = [c,G], and c, g(i) are defined as in (3). Let us demonstrate the
construction of a zonotope by an example:
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% construct zonotope

c = [1;1];

G = [1 1 1; 1 -1 0];

zono = zonotope(c,G);

-2 0 2 4
-2

0

2

4

A more detailed example for zonotopes is provided in Sec. 9.1.1 and in the file examples/con-
tSet/example zonotope.m in the CORA toolbox.

A zonotope can be interpreted as the Minkowski addition of line segments l(i) = [−1, 1]g(i). The
step-by-step construction of a two-dimesional zonotope is visualized in Fig. 2. Zonotopes are a
compact representation of sets in high-dimensional space. More importantly, operations required
for reachability analysis, such as linear maps (see Sec. 2.1.1.1) and Minkowski addition (see
Sec. 2.1.1.2) can be computed efficiently and exactly, and others, such as convex hull computation
(see Sec. 2.1.1.4) can be tightly over-approximated [24].
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Figure 2: Step-by-step construction of a zonotope.

In addition to the standard set operations described in Sec. 2.1 and the methods for converting
between set operations (see Tab. 5), the class zonotope supports additional methods which are
listed in Sec. A.1.

2.2.1.2 Intervals

A real-valued multi-dimensional interval

I := {x ∈ Rn | xi ≤ xi ≤ xi ∀i = 1, . . . , n} (4)

is a connected subset of Rn and can be specified by a lower bound x ∈ Rn and upper bound
x ∈ Rn.

Intervals are represented in CORA by the class interval. An object of class interval can be
constructed as follows:

I = interval(x, x)

where x, x are defined as in (4). A detailed description of how intervals are treated in CORA
can be found in [5]. Let us demonstrate the construction of an interval by an example:
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% construct interval

lb = [-2; -1];

ub = [4; 3];

int = interval(lb,ub);

-2 0 2 4
-2

0

2

4

A more detailed example for intervals is provided in Sec. 9.1.2 and in the file examples/con-
tSet/example interval.m in the CORA toolbox. Intervals can also be used for range bounding
as it described in Sec. 2.2.3. In addition to the standard set operations described in Sec. 2.1 and
the methods for converting between set operations (see Tab. 5), the class interval supports
additional methods, which are listed in Sec. A.2.

2.2.1.3 Ellipsoids

An ellipsoid is a geometric object in Rn. Ellipsoids are parameterized by a center q ∈ Rn and a
positive semi-definite, symmetric shape matrix Q ∈ Rn×n and defined as15

E :=
{
x ∈ Rn

∣∣∣ lTx ≤ lT q +
√
lTQl, ∀l ∈ Rn

}
. (5)

If we assume Q to be invertible (which holds true for non-degenerate ellipsoids), it can be
equivalently defined as (see [27, Definition 2.1.3])

E :=
{
x ∈ Rn

∣∣∣ (x− q)T Q−1 (x− q) ≤ 1
}
.

Ellipsoids have a compact representation increasing only with dimension. Linear maps (see
Sec. 2.1.1.1) can be computed exactly and efficiently, Minkowski sum (see Sec. 2.1.1.2) and
others can be tightly over-approximated.

Ellipsoids are represented in CORA by the class ellipsoid. An object of class ellipsoid can
be constructed as follows:

E = ellipsoid(Q),

E = ellipsoid(Q, q),

where Q, q are defined as in (5). Let us demonstrate the construction of an ellipsoid by an
example:

% construct ellipsoid

Q = [13 7; 7 5];

q = [1; 2];

E = ellipsoid(Q,q);

-2 0 2 4

0
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4

15https://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-46.pdf, Sec. 2.2.4
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A more detailed example for ellipsoids is provided in Sec. 9.1.3 and in the file examples/con-
tSet/example ellipsoid.m in the CORA toolbox. In addition to the standard set operations
described in Sec. 2.1 and the methods for converting between set operations (see Tab. 5), the
class ellipsoid supports additional methods, which are listed in Sec. A.3.

Note: While the MPT toolbox comes with the semi-definite program solver SeDuMi16, it proves
to be somewhat unreliable for higher-dimensional systems. Therefore, we encourage users to
install SDPT317 as some operations on higher-dimensional ellipsoids will fail using SeDuMi.

2.2.1.4 MPT Polytopes

There exist two representations for polytopes: The halfspace representation (H-representation)
and the vertex representation (V-representation).

H-Representation of a Polytope

The halfspace representation specifies a convex polytope P by the intersection of q halfspaces
H(i): P = H(1) ∩ H(i) ∩ . . . ∩ H(q). A halfspace is one of the two parts obtained by bisecting
the n-dimensional Euclidean space with a hyperplane S := {x | cTx = d}, c ∈ Rn, d ∈ R. The
vector c is the normal vector of the hyperplane and d is the scalar product of any point on
the hyperplane with the normal vector. From this follows that the corresponding halfspace is
H := {x | cTx ≤ d}. As the convex polytope P is the non-empty intersection of q halfspaces, all
q inequalities have to be fulfilled simultaneously.

A convex polytope P is the bounded intersection of q halfspaces:

P :=
{
x ∈ Rn

∣∣ C x ≤ d
}
, C ∈ Rq×n, d ∈ Rq. (6)

When the intersection is unbounded, one obtains a polyhedron [28].

V-Representation of a Polytope

A polytope with vertex representation is defined as the convex hull of a finite set of points in
the n-dimensional Euclidean space. The points are also referred to as vertices and denoted by
v(i) ∈ Rn. A convex hull of a finite set of r points v(i) ∈ Rn is obtained from their linear
combination:

Conv(v(1), . . . , v(r)) :=
{ r∑

i=1

αiv
(i)

∣∣ αi ∈ R, αi ≥ 0,

r∑

i=1

αi = 1
}
. (7)

The halfspace and the vertex representation are illustrated in Fig. 3. Algorithms that convert
from H- to V-representation and vice versa are presented in [29].

Polytopes are represented in CORA by the class mptPolytope. The class mptPolytope is a
wrapper class that interfaces with the MATLAB toolbox Multi-Parametric Toolbox (MPT). An
object of class mptPolytope can be constructed as follows:

P = mptPolytope(V ),

P = mptPolytope(C, d),

where V = [v(1), . . . , v(r)]T , v(i) is defined as in (7), and C, d are defined as in (6). Let us
demonstrate the construction of a polytope by an example:

16https://sedumi.ie.lehigh.edu/
17https://www.math.cmu.edu/~reha/sdpt3.html
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v(i)

Conv(v(1), . . . , v(r))

(a) V − representation

S = {x|cTx = d}
H(i)

H(1) ∩H(2) . . . ∩H(q)

(b) H − representation

Figure 3: Possible representations of a polytope.

% construct polytope (halfspace rep.)

C = [1 0 -1 0 1; 0 1 0 -1 1]’;

d = [3; 2; 3; 2; 1];

poly = mptPolytope(C,d);

% construct polytope (vertex rep.)

V = [-3 -3 -1 3; -2 2 2 -2];

poly = mptPolytope(V’);
-4 -2 0 2 4

-2

0

2

A more detailed example for polytopes is provided in Sec. 9.1.4 and in the file examples/con-
tSet/example mptPolytope.m in the CORA toolbox. In addition to the standard set operations
described in Sec. 2.1 and the methods for converting between set operations (see Tab. 5), the
class mptPolytope supports additional methods, which are listed in Sec. A.4.

2.2.1.5 Polynomial Zonotopes

Polynomial zonotopes, which were first introduced in [30], are a non-convex set representation.
In CORA we implemented the sparse representation of polynomial zonotopes described in [31].
A polynomial zonotope PZ ⊂ Rn is defined as

PZ :=

{
c+

h∑

i=1

( p∏

k=1

α
E(k,i)

k

)
G(·,i) +

q∑

j=1

βjGI(·,j)

∣∣∣∣ αk, βj ∈ [−1, 1]

}
, (8)

where c ∈ Rn is the center, G ∈ Rn×h the matrix of dependent generators, GI ∈ Rn×q the matrix
of independent generators, and E ∈ Np×h

0 the exponent matrix. Since polynomial zonotopes can
represent non-convex sets, and since they are closed under quadratic and higher-order maps,
they are a good choice for reachability analysis.

Polynomial zonotopes are represented in CORA by the class polyZonotope. An object of class
polyZonotope can be constructed as follows:

PZ = polyZonotope(c,G,GI , E),

PZ = polyZonotope(c,G,GI , E, id),

where c,G,GI , E are defined as in (8). The vector id ∈ Np
>0 stores unambiguous identifiers for

the dependent factors αk, which is important for dependency preservation as described in [32].
Let us demonstrate the construction of a polynomial zonotope by an example:
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% construct polynomial zonotope

c = [4;4];

G = [2 1 2; 0 2 2];

expMat = [1 0 3;0 1 1];

Grest = [1;0];

pZ = polyZonotope(c,G,Grest,expMat);

0 5 10

0

2

4

6

8

This example defines the polynomial zonotope

PZ =

{[
4
4

]
+

[
2
0

]
α1 +

[
1
2

]
α2 +

[
2
2

]
α3
1α2 +

[
1
0

]
β1

∣∣∣∣ α1, α2, β1 ∈ [−1, 1]

}
.

The construction of this polynomial zonotope is visualized in Fig. 4: (a) shows the set spanned by
the constant offset vector and the first and second dependent generator, (b) shows the addition
of the dependent generator with the mixed term α3

1α2, (c) shows the addition of the independent
generator, and (d) visualizes the final set.

(a) (b) (c) (d)

Figure 4: Step-by-step construction of a polynomial zonotope.

A more detailed example for polynomial zonotopes is provided in Sec. 9.1.5 and in the file
examples/contSet/example polyZonotope.m in the CORA toolbox.

2.2.1.6 Constrained Polynomial Zonotopes

Constrained polynomial zonotopes as introduced in [33] extend the polynomial zonotopes in
Sec. 2.2.1.5 by polynomial equality constraints on the dependent factors. Since constrained zono-
topes are closed under all relevant set operations including intersection and union (see Tab. 1),
they are advantageous for many set-based algorithms. Furthermore, as shown in Tab. 5, most
other set representations can be equivalently represented as constrained polynomial zonotopes,
which further substantiates their importance. A constrained polynomial zonotope CPZ ⊂ Rn

is defined as

CPZ :=

{
c+

h∑

i=1

( p∏

k=1

α
E(k,i)

k

)
G(·,i) +

d∑

j=1

βjGI(·,j)

∣∣∣∣

q∑

i=1

( p∏

k=1

α
R(k,i)

k

)
A(·,i) = b, αk, βj ∈ [−1, 1]

}
,

(9)

where c ∈ Rn is the constant offset, G ∈ Rn×h the matrix of dependent generators, GI ∈ Rn×d

the matrix of independent generators, E ∈ Np×h
0 the exponent matrix, A ∈ Rm×q is the matrix of

constraint generators, b ∈ Rm is the constraint offset, and R ∈ Np×q
0 is the constraint exponent

matrix.

Constrained polynomial zonotopes are represented in CORA by the class conPolyZono. An
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object of class conPolyZono can be constructed as follows:

CPZ = conPolyZono(c,G,E),

CPZ = conPolyZono(c,G,E,GI ),

CPZ = conPolyZono(c,G,E,GI , id),

CPZ = conPolyZono(c,G,E,A, b,R),

CPZ = conPolyZono(c,G,E,A, b,R,GI ),

CPZ = conPolyZono(c,G,E,A, b,R,GI , id),

where c,G,GI , E,A, b,R are defined as in (9). The vector id ∈ Np
>0 stores unambiguous identi-

fiers for the dependent factors αk, which is important for dependency preservation as described
in [32]. Let us demonstrate constrained polynomial zonotopes with an example:

% construct conPolyZono object

c = [0;0];

G = [1 0 1 -1;0 1 1 1];

E = [1 0 1 2;0 1 1 0;0 0 1 1];

A = [1 -0.5 0.5];

b = 0.5;

R = [0 1 2;1 0 0;0 1 0];

cPZ = conPolyZono(c,G,E,A,b,R);
-2 -1 0 1 2 3

-1

0

1

2

x1
x
2

This example defines the constrained polynomial zonotope

CPZ =

{[
0
0

]
+

[
1
0

]
α1 +

[
0
1

]
α2 +

[
1
1

]
α1α2α3 +

[
−1
1

]
α2
1α3

∣∣∣∣

α2 − 0.5α1α3 + 0.5α2
1 = 0.5, α1, α2, α3 ∈ [−1, 1]

}
.

A more detailed example for constrained polynomial zonotopes is provided in Sec. 9.1.6 and in
the file examples/contSet/example conPolyZono.m in the CORA toolbox.

2.2.1.7 Capsules

A capsule C ⊂ Rn is defined as the Minkowski sum (see Sec. 2.1.1.2) of a line segment L and a
sphere S:

C := L ⊕ S, L = {c+ gα | α ∈ [−1, 1]}, S = {x | ||x||2 ≤ r}, (10)

where c, g ∈ Rn represent the center and the generator of the line segment, respectively, and
r ∈ R≥0 is the radius of the sphere.

Capsules are represented in CORA by the class capsule. An object of class capsule can be
constructed as follows:

C = capsule(c),

C = capsule(c, g),

C = capsule(c, r),

C = capsule(c, g, r),

where c, g, r are defined as in (10). Let us demonstrate the construction of a capsule by an
example:
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% construct capsule

c = [1;2];

g = [2;1];

r = 1;

C = capsule(c,g,r);

-2 0 2 4

0

2

4

A more detailed example for capsules is provided in Sec. 9.1.7 and in the file examples/con-
tSet/example capsule.m in the CORA toolbox.

2.2.1.8 Zonotope Bundles

A disadvantage of zonotopes is that they are not closed under intersection, i.e., the intersection
of two zonotopes does not return a zonotope in general. In order to overcome this disadvantage,
zonotope bundles are introduced in [34]. Given a finite set of zonotopes Zi ⊂ Rn, a zonotope
bundle is defined as

ZB :=
s⋂

i=1

Zi, (11)

i.e., the intersection of the zonotopes Zi. Note that the intersection is not computed, but the
zonotopes Zi are stored in a list, which we write as ZB = {Z1, . . . ,Zs}.
Zonotope bundles are represented in CORA by the class zonoBundle. An object of class
zonoBundle can be constructed as follows:

ZB = zonoBundle({Z1, . . . ,Zs}),

where the list of zonotopes {Z1, . . . ,Zs} is represented as a MATLAB cell array. Let us demon-
strate the construction of a zonoBundle object by an example:

% construct zonotopes

zono1 = zonotope([1 3 0; 1 0 2]);

zono2 = zonotope([0 2 2; 0 2 -2]);

% construct zonotope bundle

list = {zono1,zono2};

zB = zonoBundle(list);
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A more detailed example for zonotope bundles is provided in Sec. 9.1.8 and in the file exam-
ples/contSet/example zonoBundle.m in the CORA toolbox. In addition to the standard set
operations described in Sec. 2.1 and the methods for converting between set operations (see
Tab. 5), the class zonoBundle supports additional methods, which are listed in Sec. A.7.

2.2.1.9 Constrained Zonotopes

An extension of zonotopes described in Sec. 2.2.1.1 are constrained zonotopes, which are in-
troduced in [26]. A constrained zonotope is defined as a zonotope with additional equality
constraints on the factors βi:

Zc :=
{
c+Gβ

∣∣∣ ‖β‖∞ ≤ 1, Aβ = b
}
, (12)
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where c ∈ Rn is the zonotope center, G ∈ Rn×p is the zonotope generator matrix and β ∈ Rp

is the vector of zonotope factors. The equality constraints are parametrized by the matrix
A ∈ Rq×p and the vector b ∈ Rq. Constrained zonotopes are able to describe arbitrary poly-
topes, and are therefore a more general set representation than zonotopes. The main advantage
compared to a polytope representation using inequality constraints (see Sec. 2.2.1.4) is that
constrained zonotopes inherit the excellent scaling properties of zonotopes for increasing state-
space dimensions, since constrained zonotopes are also based on a generator representation for
sets.

Constrained zonotopes are represented in CORA by the class conZonotope. An object of class
conZonotope can be constructed as follows:

Zc = conZonotope(c,G,A, b),

Zc = conZonotope(Z,A, b),

where Z = [c,G], and c,G,A, b are defined as in (12). Let us demonstrate the construction of a
constrained zonotope by an example:

% construct constrained zonotope

c = [0;0];

G = [1 0 1; 1 2 -1];

A = [-2 1 -1];

b = 2;

cZ = conZonotope(c,G,A,b);
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The unconstrained zonotope from this example is visualized in Fig. 5, and the equality con-
straints in Fig. 6.

-2 -1 0 1 2
x

1

-4

-2

0

2

4

x
2

Figure 5: Zonotope (blue) and the corre-
sponding constrained zonotope (red).
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1

Figure 6: Visualization of the equality con-
straints of the constrained zonotope.

A more detailed example for constrained zonotopes is provided in Sec. 9.1.9 and in the file
examples/contSet/example conZonotope.m in the CORA toolbox. In addition to the standard
set operations described in Sec. 2.1 and the methods for converting between set operations (see
Tab. 5), the class conZonotope supports additional methods, which are listed in Sec. A.8.

2.2.1.10 Probabilistic Zonotopes

Probabilistic zonotopes have been introduced in [35] for stochastic verification. A probabilistic
zonotope has the same structure as a zonotope, except that the values of some βi in (3) are
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bounded by the interval [−1, 1], while others are subject to a normal distribution18. Given
pairwise independent Gaussian-distributed random variables N (µ,Σ) with expected value µ
and covariance matrix Σ, one can define a Gaussian zonotope with certain mean:

Zg = c+

q∑

i=1

N (i)(0, 1) · g(i),

where g(1), . . . , g(q) ∈ Rn are the generators, which are underlined in order to distinguish them
from generators of regular zonotopes. Gaussian zonotopes are denoted by a subscripted g:
Zg = (c, g(1...q)).

A Gaussian zonotope with uncertain mean Z is defined as a Gaussian zonotope Zg, where the
center is uncertain and can have any value within a zonotope Z, which is denoted by

Z := Z ⊞ Zg, Z = (c, g(1...p)), Zg = (0, g(1...q)), (13)

or in short by Z = (c, g(1...p), g(1...q)). If the probabilistic generators can be represented by the

covariance matrix Σ (q > n) as shown in [35, Proposition 1], one can also write Z = (c, g(1...p),Σ).

Probabilistic zonotopes are represented in CORA by the class probZonotope. An object of class
probZonotope can be constructed as follows:

Z = probZonotope(Z,G),

where Z = [c, g(1), . . . , g(p)], G = [g(1), . . . , g(q)], and c, g(i), g(i) are defined as in (13). Let us
demonstrate the construction of a probabilistic zonotope by an example:

% construct probabilistic zonotope

c = [0;0];

G = [1 0;0 1];

G_ = [3 2; 3 -2];

pZ = probZonotope([c,G],G_);
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A more detailed example for probabilistic zonotopes is provided in Sec. 9.1.10 and in the file
examples/contSet/example probZonotope.m in the CORA toolbox.

As a probabilistic zonotope Z is neither a set nor a random vector, there does not exist a
probability density function describing Z . However, one can obtain an enclosing probabilistic
hull which is defined as f̄Z (x) = sup

{
fZg(x)

∣∣E[Zg] ∈ Z
}
, where E[ ] returns the expectation

and fZg(x) is the probability density function (PDF) of Zg. Combinations of sets with random
vectors have also been investigated, e.g., in [36]. Analogously to a zonotope, it is shown in Fig. 7
how the enclosing probabilistic hull (EPH) of a Gaussian zonotope with two non-probabilistic
and two probabilistic generators is built step-by-step from left to right.

In addition to the standard set operations described in Sec. 2.1 and the methods for converting
between set operations (see Tab. 5), the class probZonotope supports additional methods, which
are listed in Sec. A.9.

18Other distributions are conceivable, but not implemented.
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(a) PDF of (0, g(1)).
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(b) PDF of (0, g(1,2)).
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(c) EPH of (0, g(1...2), g(1...2)).

Figure 7: Construction of a probabilistic zonotope.

2.2.2 Auxiliary Set Representations

Next, we introduce some additional set representations. These set representations are mainly
used in CORA to represent guard sets for hybrid systems (see Sec. 4.3).

2.2.2.1 Constrained Hyperplane

A constrained hyperplane is a hyperplane with additional inequality constraints. A constrained
hyperplane CH ⊂ Rn is defined as follows:

CH = {x | cTx = d, Ax ≤ b}, c ∈ Rn, d ∈ R, A ∈ Rm×n, b ∈ Rm. (14)

Constrained hyperplanes are represented in CORA by the class conHyperplane. An object of
class conHyperplane can be constructed as follows:

CH = conHyperplane(c, d),

CH = conHyperplane(c, d,A, b),

where c, d,A, b are defined as in (14). In case no matrix A and no vector b are provided,
the constructed object represents a regular hyperplane. In CORA, constrained hyperplanes are
mainly used as guard sets for hybrid systems (see Sec. 4.3). Let us demonstrate the construction
of a constrained hyperplane by an example:

% construct constrained hyperplane

c = [1 1];

d = 1;

A = [0 1];

b = 1;

ch = conHyperplane(c,d,A,b);
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A more detailed example for constrained hyperplanes is provided in Sec. 9.1.12 and in the file
examples/contSet/example conHyperplane.m in the CORA toolbox. In addition to the standard
set operations described in Sec. 2.1, the class conHyperplane supports additional methods,
which are listed in Sec. A.10.

2.2.2.2 Halfspace

A halfspace HS ⊂ Rn is defined as follows:

HS = {x | cTx ≤ d}, c ∈ Rn, d ∈ R. (15)
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Halfspaces are represented in CORA by the class halfspace. An object of class halfspace can
be constructed as follows:

HS = halfspace(c, d),

where c, d are defined as in (15). Let us demonstrate the construction of a halfspace by an
example:

% construct halfspace

c = [1 1];

d = 1;

hs = halfspace(c,d);
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A more detailed example for halfspaces is provided in Sec. 9.1.12 and in the file examples/-
contSet/example halfspace.m in the CORA toolbox. In addition to the standard set operations
described in Sec. 2.1, the class halfspace supports additional methods, which are listed in
Sec. A.11.

2.2.2.3 Level Sets

A nonlinear level set LS ⊂ Rn is defined as

LS = {x | f(x) = 0} (16)

or
LS = {x | f(x) < 0} (17)

or
LS = {x | f(x) ≤ 0}, (18)

where f : Rn → R is a Lipschitz continuous function. Level sets are represented in CORA by
the class levelSet. An object of class levelSet can be constructed as follows:

LS = levelSet(f(·), vars, op),
where

• f : Rn → R is the nonlinear function that defines the level set (see (16),(17), and (18)).
The function is specified as a symbolic MATLAB function.

• vars is a vector containing the symbolic variables of the function f(·).
• op ∈ {’==’,’<’,’<=’} defines the type of level set ((16),(17), or (18), respectively).

Let us demonstrate the construction of a level set by an example:

% construct level set

vars = sym(’x’,[2,1]);

f = 1/vars(1)ˆ2 - vars(2);

op = ’==’;

ls = levelSet(f,vars,op);

0 1 2 3
0

1

2

3
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A more detailed example for level sets is provided in Sec. 9.1.13 and in the file examples/con-
tSet/example levelSet.m in the CORA toolbox. In addition to the standard set operations
described in Sec. 2.1, the class levelSet supports additional methods, which are listed in
Sec. A.12.

2.2.3 Set Representations for Range Bounding

For general nonlinear functions it is often infeasible or impossible to exactly determine its min-
imum and maximum on a certain domain. Therefore, one often tightly encloses the minimum
and maximum by range bounding. Given a nonlinear function f : Rn → R and a domain
D ⊂ Rn, the range bounding operation B returns a tight enclosure of the function values:

B(f(x),D) ⊇
[
min
x∈D

f(x), max
x∈D

f(x)
]
. (19)

There exist many different ways to implement the range bounding operation B in (19). The sim-
plest method is to apply interval arithmetic [37], for which the interval class (see Sec. 2.2.1.2)
can be used. A detailed description how interval arithmetic is implemented in CORA is provided
in [5]. However, while interval arithmetic is fast, it often results in quite conservative bounds.
We therefore additionally implemented Taylor models [38] by the class taylm (see Sec. 2.2.3.1),
affine arithmetic [39] by the class affine (see Sec. 2.2.3.2), and a combination of several methods
by the class zoo (see Sec. 2.2.3.3).

Let us first demonstrate range bounding for the nonlinear function f(x) = sin(x1)x2+x21 within
the domain x1 ∈ [−1, 2], x2 ∈ [0, 1]. Bounds using interval arithmetic can be computed as
follows:

% function f(x)

f = @(x) sin(x(1))*x(2) + x(1)ˆ2;

% domain D for x

D = interval([-1;0],[2;1]);

% compute bounds

res = f(D)

Command Window:

res =

[-0.84147,5.00000]

2.2.3.1 Taylor Models

Taylor models [38, 40–42] can be used to obtain rigorous bounds of functions that are often
tighter than the ones obtained by interval arithmetic. A Taylor model T (x) is defined as

T (x) = {p(x) + y | y ∈ I}, (20)

where p : Rp → Rn is a polynomial function and I ⊂ Rn is an interval (see Sec. 2.2.1.2).
For range bounding, the possible values for the variable x are usually restricted by an interval
domain D ⊂ Rp (see (19)).

To enclose a nonlinear function with a Taylor model, a Taylor series expansion of the function
is computed:

f(x) ≈ f(x∗) +
∂f

∂x

∣∣∣∣
x∗

(x− x∗) +
∂2f

∂x2

∣∣∣∣
x∗

(x− x∗)2 + . . .

Let us consider the nonlinear function f(x) = cos(x) as an example. By computing a second-
order Taylor series expansion at the expansion point x∗ = 0, the function f(x) on the domain
x ∈ [−1, 1] can be enclosed by the Taylor model

T (x) :=
{
1− 0.5x2 + y

∣∣ y ∈ [−0.15, 0.15]
}
, (21)
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which is visualized in Fig. 8.

Figure 8: Function f(x) = cos(x) (black) and the enclosing Taylor model T (x) in (21) (blue).

Taylor models are represented by the class taylm. An object of class taylm can be constructed
as follows:

T (x) = taylm(D),

T (x) = taylm(D, maxOrder, name, optMethod, tolerance, eps),

where D ⊂ Rp is the interval domain for the variable x. The domain D is defined by an object
of class interval (see Sec. 2.2.1.2). The additional optional parameters are defined as follows:

• maxOrder: Maximum polynomial degree of the monomials in the polynomial part of the
Taylor model. Monomials with a degree larger than maxOrder are enclosed and added
to the interval remainder. Further, q = maxOrder is used for the implementation of the
formulas listed in [6, Appendix A].

• name: String or cell array of strings defining the names for the variables. Unique names
are important since Taylor models explicitly consider dependencies between the variables.

• optMethod: Method used to calculate the bounds of the Taylor model objects. The avail-
able methods are ’int’ (interval arithmetic, default), ’bnb’ (branch and bound algorithm,
see [6, Sec. 2.3.2]), ’bnbAdv’ (branch and bound with Taylor model re-expansion) and
’linQuad’ (optimization with Linear Dominated Bounder and Quadratic Fast Bounder,
see [6, Sec. 2.3.3])

• tolerance: Minimum absolute value of the monomial coefficients in the polynomial part
of the Taylor model. Monomials with a coefficient whose absolute value is smaller than
tolerance are enclosed and added to the interval remainder.

• eps: Termination tolerance ǫ for the branch and bound algorithm from [6, Sec. 2.3.2]
and for the algorithm based on the Linear Dominated Bounder and the Quadratic Fast
Bounder from [6, Sec. 2.3.3].

CORA also supports to create Taylor models from symbolic functions. A detailed description
of this is provided in Sec. A.13.1.
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Let us demonstrate Taylor models by an example:

% function f(x)

f = @(x) sin(x(1))*x(2) + x(1)ˆ2;

% create Taylor model

D = interval([-1;0],[2;1]);

tay = taylm(D,10,’x’,’linQuad’);

% compute bounds

res = interval(f(tay))

Command Window:

res =

[-0.23256,4.90940]

A more detailed example for Taylor models is provided in Sec. 9.1.14 and in the file examples/-
contSet/example taylm.m in the CORA toolbox. A detailed description of how Taylor models
are treated in CORA can be found in [6]. Furthermore, a list of operations that are implemented
for the class taylm is provided in Sec. A.13.

2.2.3.2 Affine

Affine arithmetic uses affine forms, i.e., first-order polynomials consisting of a vector x ∈ Rn

and noise symbols ǫi ∈ [−1, 1] (see e.g., [39]):

x̂ = x0 + ǫ1x1 + ǫ2x2 + . . .+ ǫpxp.

The possible values of x̂ lie within a zonotope [43].

Affine arithmetic is implemented by the class affine. Since we only consider intervals as inputs
and outputs, we realized affine arithmetic as Taylor models of first order. The class affine

therefore inherits all methods from the class taylm and does not implement any functionality
on its own. The main purpose of the class affine is to provide a convenient and easy-to-use
interface for the user. An object of class affine can be constructed as follows:

A(x) = affine(D),

A(x) = affine(D, order, name, optMethod, tolerance, eps),

where the input arguments are identical to the ones for the class taylm (see Sec. 2.2.3.1). Let
us demonstrate the class affine by an example:

% function f(x)

f = @(x) sin(x(1)).*x(2) + x(1)ˆ2;

% create affine object

D = interval([-1;0],[2;1]);

aff = affine(D);

% compute bounds

res = interval(f(aff))

Command Window:

res =

[-3.69137,6.74245]

A more detailed example for the class affine is provided in Sec. 9.1.15 and in the file exam-
ples/contSet/example affine.m in the CORA toolbox.

2.2.3.3 Zoo

When it comes to range bounding, it is often better to use several simple range bounding methods
in parallel and intersect the result, instead of tuning one method towards high accuracy. This is

42



2 SET REPRESENTATIONS AND OPERATIONS

demonstrated by the numerical examples shown in [6] and by the code example in Sec. 9.1.16.
To facilitate mixing different range bounding techniques, we created the class zoo in which one
can specify the methods to be combined. An object of class zoo can be constructed as follows:

Z(x) = zoo(D, methods),

Z(x) = zoo(D, methods, name, maxOrder, tolerance, eps),

where all input arguments except of methods are identical to the ones for the class taylm (see
Sec. 2.2.3.1). The argument methods is a cell array containing strings that describe the range
bounding methods that are combined. The following range bounding methods are available:

• ’interval’ – Interval arithmetic (see Sec. 2.2.1.2).

• ’affine(int)’ – Affine arithmetic; the bounds of the affine objects are calculated with
interval arithmetic (see Sec. 2.2.3.2).

• ’affine(bnb)’ – Affine arithmetic; the bounds of the affine objects are calculated with
the branch and bound algorithm (see Sec. 2.2.3.2).

• ’affine(bnbAdv)’ – Affine arithmetic; the bounds of the affine objects are calculated
with the advanced branch and bound algorithm (see Sec. 2.2.3.2).

• ’affine(linQuad)’ – Affine arithmetic; the bounds of the affine objects are calculated
with the algorithm that is based on the Linear Dominated Bounder and the Quadratic
Fast Bounder (see Sec. 2.2.3.2).

• ’taylm(int)’ – Taylor models; the bounds of the Taylor models are calculated with
interval arithmetic (see Sec. 2.2.3.1).

• ’taylm(bnb)’ – Taylor models; the bounds of the Taylor models are calculated with the
branch and bound algorithm (see Sec. 2.2.3.1).

• ’taylm(bnbAdv)’ – Taylor models; the bounds of the Taylor models are calculated with
the advanced branch and bound algorithm (see Sec. 2.2.3.1).

• ’taylm(linQuad)’ – Taylor models; the bounds of the Taylor models are calculated with
the algorithm that is based on the Linear Dominated Bounder and the Quadratic Fast
Bounder (see Sec. 2.2.3.1).

All functions that are implemented for class taylm are also available for the class zoo. Let us
demonstrate the class zoo by an example:

% function f(x)

f = @(x) sin(x(1)).*x(2) + x(1)ˆ2;

% create zoo object

D = interval([-1;0],[2;1]);

methods = {’interval’,’taylm(linQuad)’};

Z = zoo(D,methods);

% compute bounds

res = interval(f(Z))

Command Window:

res =

[-0.23983,4.92298]

A more detailed example for the class zoo is provided in Sec. 9.1.16 and in the file examples/-
contSet/example zoo.m in the CORA toolbox.

43



3 MATRIX SET REPRESENTATIONS AND OPERATIONS

3 Matrix Set Representations and Operations

Besides vector sets as introduced in the previous section, it is often useful to represent sets of
possible matrices. This occurs for instance when a linear system has uncertain parameters as
described later in Sec. 4.2.2. CORA supports the following matrix set representations:

• Matrix polytope (Sec. 3.2.1).

• Matrix zonotope (Sec. 3.2.2, specialization of a matrix polytope).

• Interval matrix (Sec. 3.2.3, specialization of a matrix zonotope).

Note that we use the term matrix polytope instead of polytope matrix. The reason is that the
analogous term vector polytope makes sense, while polytope vector can be misinterpreted as a
vertex of a polytope. We do not use the term matrix interval since the term interval matrix is
already established.

For each matrix set representation, the conversion to all other matrix set computations is im-
plemented. Of course, conversions to specializations are realized in an over-approximative way,
while the other direction is computed exactly (see Tab. 6). In order to convert a matrix set, it
is sufficient to pass the current matrix set object to the class constructor of the target matrix
set representation, as demonstrated by the following example:

% interval matrix

C = [0 1;0 -2.5];

D = [0 0;0 0.5];

intMat = intervalMatrix(C,D);

% conversion to other matrix set representations

matZono = matZonotope(intMat);

matPoly = matPolytope(intMat);

Table 6: Matrix set conversions supported by CORA. The row headers represent the original
matrix set representation and the column headers the target matrix set representation after
conversion. The shortcuts e (exact conversion) and o (over-approximation) are used.

matPolytope matZonotope intervalMatrix

matPolytope (Sec. 3.2.1) - o o
matZonotope (Sec. 3.2.2) e - o
intervalMatrix (Sec. 3.2.3) e e -

We first introduce importrant operations for matrix sets in Sec. 3.1 before we describe the matrix
set representations implemented in detail in Sec. 3.2.
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3.1 Matrix Set Operations

This section describes the implemented standard operations for matrix sets.

3.1.1 mtimes

The method mtimes, which overloads the ∗ operator, implements the multiplication of two
matrix sets or the multiplication of a matrix set with a vector set, depending on the input
arguments. Given two matrix sets A1,A2 ⊂ Rn×n and a vector set S ⊂ Rn, the method mtimes

computes

mtimes(A1,A2) = A1 ⊗A2 = {A1 ·A2 | A1 ∈ A1, A2 ∈ A2},
mtimes(A1,S) = A1 ⊗ S = {A1 · s | A1 ∈ A1, s ∈ S}.

If the corresponding matrix set representation is not closed under multiplication, mtimes returns
an over-approximation. Let us demonstrate the method mtimes by an example:

% vector set

S = zonotope([0 1 1 0; ...

0 1 0 1]);

% matrix set

C = [1 0; -1 0.5];

D = [0.1 0; 0 0.2];

A = intervalMatrix(C,D);

% linear transformation

res = A * S;
-3 -2 -1 0 1 2 3

a

-3

-2

-1

0

1

2

3

b

c

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

3.1.2 plus

The method plus, which overloads the + operator, implements the Minkowski sum of two matrix
sets. Given two matrix sets A1,A2 ⊂ Rn×n, their Minkowski sum is defined as

plus(A1,A2) = A1 ⊕A2 = {A1 +A2 | A1 ∈ A1, A2 ∈ A2}.

If the corresponding matrix set representation is not closed under Minkowski sum, plus returns
an over-approximation. Let us demonstrate the method plus by an example:

% matrix sets

A1 = intervalMatrix([0 1;2 3],[1 2;0 1]);

A2 = intervalMatrix([3 2;2 2],[0 1;1 0]);

% Minkowski addition

res = A1 + A2

Command Window:

res =

[2.000,4.000] [0.000,6.000]

[3.000,5.000] [4.000,6.000]
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3.1.3 expm

Given a matrix set A ⊂ Rn×n, the method expm computes a tight enclosure of the matrix
exponential

expm(A) ⊇ eA =

∞∑

i=0

Ak

k!
.

The number of Taylor terms η used for the calculation of the matrix exponential (see [25,
Theorem 3.2]) can be specified as an additional input argument:

expm(A, η) ⊇ eA.

The computation of a tight enclosure of the matrix exponential for matrix sets is essential
for reachability analysis of linear parametric systems (see Sec. 4.2.2). Let us demonstrate the
method expm by an example:

% matrix set

C = [0 1;0 -2.5];

D = [0 0;0 0.5];

A = intervalMatrix(C,D);

% matrix exponential

eA = expm(A)

Command Window:

res =

[1.00000,1.00000] [-1.21072,1.95859]

[0.00000,0.00000] [-5.25685,5.44556]

3.1.4 vertices

Given a matrix set A ⊂ Rn×n, the method vertices computes its vertices V1, . . . , Vq, Vi ∈ Rn×n:

vertList = vertices(A),

where vertList is a MATLAB cell array that stores the vertices Vi. Let us demonstrate the
method vertices by an example:

% matrix set

C = [0 1;3 2];

G{1} = [1 2;0 1];

A = matZonotope(C,G);

% compute vertices

res = vertices(A)

Command Window:

res{1} =

-1.0000 -1.0000

3.0000 1.0000

res{2} =

1.0000 3.0000

3.0000 3.0000
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3.2 Matrix Set Representations

This section describes the different matrix set representations implemented in CORA.

3.2.1 Matrix Polytopes

A matrix polytope is defined analogously to a V-polytope (see Sec. 2.2.1.4):

A[p] =

{ r∑

i=1

αiV
(i)

∣∣∣ αi ∈ R, αi ≥ 0,
∑

i

αi = 1

}
, V (i) ∈ Rn×n. (22)

The matrices V (i) are also called vertices of the matrix polytope. When substituting the matrix
vertices by vector vertices v(i) ∈ Rn, one obtains a V-polytope (see Sec. 2.2.1.4).

Matrix polytopes are implemented in CORA by the class matPolytope. An object of class
matPolytope can be constructed as follows:

A[p] = matPolytope(vert),

where vert is a MATLAB cell array that stores the vertices V (i), see (22), of the matrix polytope.

Let us demonstrate the construction of a matPolytope object by an example:

V (1) =

[
1 2
0 1

]
, V (2) =

[
1 3
−1 2

]
% vertices

V{1} = [1 2; 0 1];

V{2} = [1 3; -1 2];

% matrix polytope

mp = matPolytope(V);

A more detailed example for matrix polytopes is provided in Sec. 9.2.1 and in the file exam-
ples/matrixSet/example matPolytope.m in the CORA toolbox. Furthermore, a list of methods
for the class matPolytope is provided in Sec. B.1.

3.2.2 Matrix Zonotopes

A matrix zonotope is defined analogously to zonotopes (see Sec. 2.2.1.1):

A[z] =
{
G(0) +

κ∑

i=1

piG
(i)
∣∣∣pi ∈ [−1, 1]

}
, G(i) ∈ Rn×n (23)

and is written in short form as A[z] = (G(0), G(1), . . . , G(κ)), where the first matrix is referred
to as the matrix center and the other matrices as matrix generators. The order of a matrix
zonotope is defined as ρ = κ/n. When exchanging the matrix generators by vector generators
g(i) ∈ Rn, one obtains a zonotope (see e.g., [24]).

Matrix zonotopes are implemented by the class matZonotope. An object of class matZonotope
can be constructed as follows:

A[z] = matZonotope(G(0), genMats),

where genMats is a MATLAB cell array that stores the generator matrices, see (23).
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Let us demonstrate the construction of a matZonotope object by an example:

G(0) =

[
0 0
0 0

]
, G(1) =

[
1 3
−1 2

]
, G(2) =

[
2 0
1 −1

]
% matrix center

C = [0 0; 0 0];

% matrix generators

G{1} = [1 3; -1 2];

G{2} = [2 0; 1 -1];

% matrix zonotope

mz = matZonotope(C,G);

A more detailed example for matrix zonotopes is provided in Sec. 9.2.2 and in the file exam-
ples/matrixSet/example matZonotope.m in the CORA toolbox. Furthermore, a list of methods
for the class matZonotope is provided in Sec. B.2.

3.2.3 Interval Matrices

An interval matrix is a special case of a matrix zonotope and specifies the interval of possible
values for each matrix element:

A[i] = [A,A], ∀i, j : aij ≤ aij, A,A ∈ Rn×n.

The matrix A is referred to as the lower bound and A as the upper bound of A[i].

In CORA, interval matrices are implemented by the class intervalMatrix. An object of class
intervalMatrix can be constructed as follows:

A[i] = intervalMatrix(C,D),

where C = 0.5(A +A) is the center matrix and D = 0.5(A −A) is the width matrix.

Let us demonstrate the construction of an intervalMatrix object by an example:

A =

[
−1 0
2 0

]
, A =

[
1 4
4 2

]
% center matrix

C = [0 2; 3 1];

% width matrix

D = [1 2; 1 1];

% interval matrix

mi = intervalMatrix(C,D);

A more detailed example for interval matrices is provided in Sec. 9.2.3 and in the file examples/-
matrixSet/example intervalMatrix.m in the CORA toolbox. Furthermore, a list of methods for
the class intervalMatrix is provided in Sec. B.3.
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4 Dynamic Systems and Operations

This section introduces the dynamic systems and operations on them. As in Section 2 on set
representations, we start with the operations.

4.1 Dynamic System Operations

To improve the usability of CORA, all dynamic systems share a set of identical operations, such
as reach to compute the reachable set. This subsection presents the most common, currently
implemented operations.

4.1.1 reach

The operation reach computes the reachable set of a dynamic system. Let us denote the solution
of a dynamic system by χ(t;x0, u(·), p), where t ∈ R is the time, x0 = x(t0) ∈ Rn is the initial
state, u(·) ∈ Rm is the system input, and p ∈ Rp is a parameter vector. The reachable set at
time t = tf can be defined for a set of initial states X0 ⊂ Rn, a set of input values U(t) ⊂ Rm,
and a set of parameter values P ⊂ Rp, as

Re(tf ) =
{
χ(tf ;x0, u(·), p, w) ∈ Rn

∣∣ x0 ∈ X0,∀t ∈ [t0, tf ] : u(t) ∈ U(t), p ∈ P, w ∈ W
}
. (24)

Since the exact reachable set Re(t) as defined in (24) cannot be computed in general, the
operation reach computes a tight enclosure R(t) ⊇ Re(t).

The syntax for the operation reach is:

R = reach(sys, params, options)

[R, res] = reach(sys, params, options, spec)

with input arguments

• sys dynamic system defined by any of the classes in Sec. 4.2 or 4.3, e.g., linearSys,
hybridAutomaton, etc.

• params struct containing the parameter that define the reachability problem

– .tStart initial time t0 (default value 0)

– .tFinal final time tf

– .R0 initial set X0 specified by one of the set representations in
Sec. 2.2.1

– .U input set U specified as an object of class zonotope (see
Sec. 2.2.1.1)

– .u time-dependent center uc(t) of the time-varying input set
U(t) := uc(t)⊕U specified as a matrix for which the number
of colums is identical to the number of reachability steps
(optional)

– .paramInt set of parameter values P specified as an object of class
interval (see Sec. 2.2.1.2) (class nonlinParamSys only)

– .W disturbance set W specified as an object of class interval
(see Sec. 2.2.1.2) or zonotope (see Sec. 2.2.1.1 (classes
linearSys and linearSysDT only)

– .V set of sensor noises V specified as an object of class interval
(see Sec. 2.2.1.2)or zonotope (see Sec. 2.2.1.1 (classes
linearSys and linearSysDT only)

49



4 DYNAMIC SYSTEMS AND OPERATIONS

– .y0guess guess for a consistent initial algebraic state (class
nonlinDASys only, see Sec. 4.2.8.1).

– .startLoc index of the initial location (class hybridAutomaton and
parallelHybridAutomaton only)

– .finalLoc index of the final location. Reachability analysis stops as
soon as the final location is reached (class hybridAutomaton
and parallelHybridAutomaton only, optional)

• options struct containing algorithm settings for reachability analysis. Since the set-
tings are different for each type of dynamic system, they are documented in
Sec. 4.2 and Sec. 4.3.

• spec object of class specification (see Sec. 6.3) which represents the specifications
the system has to verify. Reachability analysis stops as soon as a specification
is violated.

and output arguments

• R object of class reachSet (see Sec. 6.1) that stores the reachable set R(ti) at
time point ti and the reachable set R(τi) for time intervals τi = [ti, ti+1].

• res Boolean flag that indicates whether the specifications are satisfied (res = 1)
or not (res = 0).

Let us demonstrate the operation reach by an example:

% system dynamics

sys = linearSys([-0.7 -2;2 -0.7],[1;1],[-2;-1]);

% parameter

params.tFinal = 5;

params.R0 = zonotope(interval([2;2],[2.5;2.5]));

params.U = zonotope(interval(-0.1,0.1));

% reachability settings

options.timeStep = 0.05;

options.zonotopeOrder = 10;

options.taylorTerms = 5;

% reachability analysis

R = reach(sys,params,options);

4.1.2 reachInner

The operation reach, which was introduced in Sec. 4.1.1, computes a tight outer-approximation
R(t) ⊇ Re(t) of the exact reachable set Re(t) as defined in (24). For most cases computing an
outer-approximation of the reachable set is sufficient. However, sometimes it also required to
compute an inner-approximation Ri(t) ⊆ Re(t) of the exact reachable set: Inner-approximations
can be used to prove that a system provably violates a given specification, they are required
for conformance testing using reachset conformance [2], and they are very useful for controller
synthesis where one often has to prove that the controlled system is guaranteed to reach a certain
goal set.

The operation reachInner computes a tight inner-approximation Ri(t) ⊆ Re(t) of the exact
reachable set Re(t) as defined in (24). Currently, CORA only supports the computation of
inner-approximations for the reachable set at certain time-points ti, but not for time intervals
τi = [ti, ti+1]. Since some approaches compute an inner-approximation based on the outer-
approximation of the reachable set, the operation reachInner returns in some cases both an
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inner-approximation as well as an outer-approximation of the reachable set.

The syntax for the operation reachInner is:

[Rin, Rout] = reachInner(sys, params, options)

Rin = reachInner(sys, params, options)

with input arguments

• sys dynamic system defined by any of the classes in Sec. 4.2, e.g., linearSys,
nonlinearSys, etc.

• params struct containing the parameter that define the reachability problem. The
parameters are identical to those for the operation reach (see Sec. 4.1.1).

• options struct containing algorithm settings for reachability analysis. Since the set-
tings are different for each type of dynamic system, they are documented in
Sec. 4.2.

and output arguments

• Rin object of class reachSet (see Sec. 6.1) that stores the inner-approximations
Ri(ti) of the reachable set at time points ti.

• Rout object of class reachSet (see Sec. 6.1) that stores the outer-approximations
R(ti) of the reachable set at time points ti (class nonlinearSys only).

Let us demonstrate the operation reachInner by an example:

% system dynamics

f = @(x,u) [1-2*x(1) + 3/2 * x(1)ˆ2*x(2); ...

x(1)-3/2*x(1)ˆ2*x(2)];

sys = nonlinearSys(f);

% parameter

params.tFinal = 1;

params.R0 = interval([0.75;0],[1;0.25]);

% reachability settings

options.algInner = ’scale’;

options.timeStep = 0.001;

options.taylorTerms = 10;

options.zonotopeOrder = 50;

options.intermediateOrder = 20;

options.errorOrder = 10;

% reachability analysis

[Rin,Rout] = reachInner(sys,params,options);

0.6 0.7 0.8

0.5

0.6

4.1.3 observe

The operation observe performs guaranteed state estimation to obtain the set of possible states
from inputs and outputs. Since measurements are typically obtained at discrete points in time,
we only discuss the discrete-time case subsequently. To formalize the problem of set-based state
estimation, we introduce the operator to receive the next state as χ(xk, uk, wk). Our goal is to
obtain the set of states Sk at time step k enclosing the true state from a set of initial states
S0 ⊂ Rn, which we define inductively:

Sk =
{
xk = χ

(
xk−1, uk−1, wk−1

)∣∣∣xk−1 ∈ Sk−1, wk−1 ∈ W, vk ∈ V, yk = Cxk + vk

}
.
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A reachability problem is a special case, which does not require to check the consistency with
the measurement to obtain the reachable set as

Rk =
{
xk = χ

(
xk−1, uk−1, wk−1

)∣∣∣xk−1 ∈ Sk−1, wk−1 ∈ W
}
.

We aim at computing an over-approximation of Sk that minimizes various cost functions as
described in [44, 45]. This goal is pursued differently for the strip-based, set-propagation, and
interval observers [44,45].

The syntax for the operation observe is:

R = observe(sys, params, options)

with input arguments

• sys dynamic system defined by one of the classes linearSysDT (see Sec. 4.2.3) or
nonlinearSysDT (see Sec. 4.2.7)

• params struct containing the parameter that define the observation problem

– .tStart initial time t0 (default value 0)

– .tFinal final time tf

– .R0 initial set X0 specified by one of the set representations in
Sec. 2.2.1

– .W disturbance W specified as an object of class zonotope (see
Sec. 2.2.1.1) or ellipsoid (see Sec. 2.2.1.3)

– .V set of sensor noises V specified as an object of class zonotope
(see Sec. 2.2.1.1) or ellipsoid (see Sec. 2.2.1.3)

– .u time-dependent input u(t) to the system, specified as a ma-
trix for which the number of colums is identical to the num-
ber of measurements

– .y time-dependent output y(t) to the system, specified as a
matrix for which the number of colums is identical to the
number of measurements

• options struct containing algorithm settings for set-based observation. Since the set-
tings are different for each type of dynamic system, they are documented in
Sec. 4.2 and Sec. 4.3.

and output arguments

• R object of class reachSet (see Sec. 6.1) that stores the observed set R(ti) for
all time points.

Let us demonstrate the operation observe by an example:
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%% Parameters

params.tFinal = 20; %final time

params.R0 = zonotope(zeros(2,1),3*eye(2)); %initial set

params.V = 0.2*zonotope([0,1]); % sensor noise set

params.W = 0.02*[-6; 1]*zonotope([0,1]); % disturbance set

params.u = zeros(2,1); % input vector

params.y = [0.79, 5.00, 4.35, 1.86, -0.11, -1.13, -1.17, -0.76, ...

-0.12, 0.72, 0.29, 0.19, 0.09, -0.21, 0.05, -0.00, -0.16, 0.01, ...

-0.08, 0.13]; %measurement vector

%% Algorithmic Settings

options.zonotopeOrder = 20; % zonotope order

options.timeStep = 1; % setp size

options.alg = ’FRad-C’; % observer approach

%% System Dynamics

reactor = linearSysDT(’reactor’,[0 -0.5; 1 1], 1, zeros(2,1), [-2 1], options.timeStep);

% observe

EstSet = observe(reactor,params,options);
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4.1.4 simulate

The operation simulate simulates a dynamical system and returns a trajectory starting from
the initial state x0 = x(t0) ∈ Rn for an input signal u(t) ∈ Rm and a parameter value p ∈ Rp.
The syntax is as follows:

[t, x] = simulate(sys, params)

[t, x, ind] = simulate(sys, params, options)

[t, x, ind, y] = simulate(sys, params, options)

with the input arguments
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• sys dynamic system defined by one of the classes in Sec. 4.2 or 4.3, e.g., linearSys,
hybridAutomaton, etc.

• params struct containing the parameter for the simulation

– .tStart initial time t0 (default value 0)

– .tFinal final time tf

– .x0 initial point x0

– .u piecewise-constant input signal u(t) specified as a matrix
for which the number of rows is identical to the number of
system inputs

– .p parameter value p (class nonlinParamSys only)

– .w disturbance w (classes linearSys and linearSysDT only)

– .v sensor noise v (classes linearSys and linearSysDT only)

– .y0guess guess for a consistent initial algebraic state (class
nonlinDASys only, see Sec. 4.2.8.1).

– .startLoc index of the initial location (class hybridAutomaton and
parallelHybridAutomaton only)

– .finalLoc index of the final location (class hybridAutomaton and
parallelHybridAutomaton only)

• options simulation options for MATLAB’s ode45 function (see
https://de.mathworks.com/help/matlab/ref/ode45.html).

and the output arguments

• t time points of the simulated trajectory

• x states of the simulated trajectory

• ind index of event function triggered by MATLAB’s ode45 function (see
https://de.mathworks.com/help/matlab/ref/ode45.html)

• y output trajectory (classes linearSys and linearSysDT only)

Let us demonstrate the operation simulate by an example:

% nonlinear system

f = @(x,u) [x(2) + u; ...

(1-x(1)ˆ2)*x(2)-x(1)];

sys = nonlinearSys(f);

% parameter

params.x0 = [1.4;2.3];

params.tFinal = 6;

params.u = [0.1 0 -0.1 0.2];

% simulation

[t,x] = simulate(sys,params);
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4.1.5 simulateRandom

The operation simulateRandom simulates a dynamic system for multiple random initial states
x0 ∈ X0 and random values for the inputs u(t) ∈ U as well as parameters p ∈ P. The syntax is
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as follows:
simRes = simulateRandom(sys, params, options)

with input arguments

• sys dynamic system defined by one of the classes in Sec. 4.2 or 4.3, e.g., linearSys,
hybridAutomaton, etc.

• params struct containing the parameters that define the reachability problem. The
parameters are identical to those for the operation reach (see Sec. 4.1.1).

• options struct containing settings for the random simulation

– .points number of random initial states (positive integer)

– .type sampling method: ’standard’ (default, undefined distribu-
tion), ’gaussian’ (Gaussian distribution), ’rrt’ (sampling
using rapidly exploring random trees)

depending on the sampling method, there are different additional settings

.type = ’standard’: standard sampling method (undefined distribution)

– .fracVert percentage of initial states randomly drawn from the vertices
of the initial set X0 (value in [0, 1])

– .fracInpVert percentage of input values randomly drawn from the vertices
of the input set U (value in [0, 1])

– .nrConstInp number piecewise-constant input values within the input sig-
nal during simulation (integer ≥ 1)

.type = ’rrt’: sampling using rapidly-exploring random trees

– .vertSamp flag specifying whether random initial states, inputs, and
parameters are sampled from the vertices of the correspond-
ing sets (0 or 1).

– .stretchFac stretching factor for enlarging the reachable sets during ex-
ecution of the algorithm (scalar > 1).

– .R object of class reachSet (see Sec. 6.1) that stores the reach-
able set for the corresponding reachability problem.

.type = ’gaussian’: sampling from gaussian distribution

– .nrConstInp number piecewise-constant input values within the input sig-
nal during simulation (integer ≥ 1)

– .p conf probability that sampled value is within the set (value in
(0, 1))

and output arguments

• simRes object of class simResult (see Sec. 6.2) that stores the simulated trajectories.

Let us demonstrate the operation simulateRandom by an example:
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% system dynamics

sys = linearSys([-0.7 -2;2 -0.7],[1;1],[-2;-1]);

% parameter

params.tFinal = 5;

params.R0 = zonotope(interval([2;2],[2.5;2.5]));

params.U = zonotope(interval(-0.1,0.1));

% simulation settings

options.points = 7;

options.fracVert = 0.5;

options.fracInpVert = 1;

options.nrConstInp = 10;

% random simulation

simRes = simulateRandom(sys,params,options);

4.1.6 cora2spaceex

The operation cora2spaceex convertes a dynamical system represented as a CORA object to
a SpaceEx model [46]. The syntax is as follows:

cora2spaceex(sys, fileName)

with the input arguments

• sys dynamic system represented as an object of class linearSys (see Sec. 4.2.1),
nonlinearSys (see Sec. 4.2.5), or hybridAutomaton (see 4.3.1).

• fileName name of the converted SpaceEx file.

Let us demonstrate the operation cora2spaceex by an example:

% nonlinear system

f = @(x,u) [x(2); ...

(1-x(1)ˆ2)*x(2)-x(1)];

sys = nonlinearSys(f);

% convert to SpaceEx model

cora2spaceex(sys,’vanDerPol’);

<?xml version="1.0" encoding="utf-8"?>

<sspaceex math="spaceex" version="2.0">

<component id="model">

<param name="x1" type="real"/>

<param name="x2" type="real"/>

<location id="1">

<invariant/>

<flow>

x1’ == x2 &amp;

x2’ == - x1 - x2*(x1^2 - 1)

</flow>

</location>

</component>

</sspaceex>

4.2 Continuous Dynamics

This section introduces various classes to represent different types of continuous dynamics.
CORA supports the following continuous dynamics:

• Linear systems (Sec. 4.2.1)

• Linear systems with uncertain parameters (Sec. 4.2.2)

• Linear discrete-time systems (Sec. 4.2.3)

• Linear probabilistic systems (Sec. 4.2.4)

• Nonlinear systems (Sec. 4.2.5)
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• Nonlinear systems with uncertain parameters (Sec. 4.2.6)

• Nonlinear discrete-time systems (Sec. 4.2.7)

• Nonlinear differential-algebraic systems (Sec. 4.2.8)

• Neural network controlled systems (Sec. 4.2.9)

Each class for continuous dynamics inherits from the parent class contDynamics (see Fig. 1).
Next, we explain all classes in detail.

4.2.1 Linear Systems

The first system dynamics we consider are linear systems of the form

ẋ(t) = Ax(t) +Bu(t) + c+ w(t)

y(t) = Cx(t) +Du(t) + k + v(t),
(25)

where x(t) ∈ Rn is the system state, u(t) ∈ Rm is the system input, w(t) ∈ Rn is the disturbance,
y(t) ∈ Rp is the system output, v(t) ∈ Rp is the sensor noise, and A ∈ Rn×n, B ∈ Rn×m, c ∈ Rn,
C ∈ Rp×n, D ∈ Rp×m, k ∈ Rp. Linear systems are implemented by the class linearSys. An
object of class linearSys can be constructed as follows:

sys = linearSys(A,B)

sys = linearSys(A,B, c, C,D, k)

sys = linearSys(name, A,B)

sys = linearSys(name, A,B, c, C,D, k),

where name is a string specifying the name of the system and A,B, c, C,D, k are defined as in
(25). Let us demonstrate the class linearSys by an example:

[
ẋ1
ẋ2

]
=

[
−2 0
1 −3

] [
x1
x2

]
+

[
1
1

]
u

y =
[
1 0

] [x1
x2

]

% system matrices

A = [-2 0; 1 -3];

B = [1; 1];

C = [1 0];

% linear system

sys = linearSys(A,B,[],C);

4.2.1.1 Operation reach

There exist several different algorithms for computing the reachable set of a linear system. The
algorithms implemented in CORA are listed in Tab. 7. We recommend to use the adaptive al-
gorithm (options.linAlg = ’adaptive’) since it is fully automatic and does not require any
manual parameter tuning. A visualization of the basic steps that are applied to calculate the
reachable set for a linear system is shown in Fig. 9: First, the reachable set Rd

h = eA∆tX0 for the
next point in time is computed by propagating the initial set X0 with the matrix exponential
eA∆t. In the second step, the convex hull is computed. To account for the curvature of trajecto-
ries, the set resulting from the convex hull is bloated by an error term in the third step, which
yields a tight enclosure of the reachable set Rd(τ0) for the time interval τ0.

The settings for reachability analysis are specified as fields of the struct options (see Sec. 4.1.1).
For linear systems, the following settings are available:

19Requires Multiple Precision Toolbox :
https://www.mathworks.com/matlabcentral/fileexchange/6446-multiple-precision-toolbox-for-matlab
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Table 7: Reachability algorithms for linear systems.

algorithm description literature

standard standard algorithm [24]
wrapping-free avoid wrapping effect [47]
fromStart propagation from start [8]
decomp block decomposition (high-dim. systems) [48]
krylov Krylov subspace method (high-dim. systems) [49]19

adap determine near-optimal settings automatically [50]

– .linAlg string specifying the reachability algorithm that is used (see
Tab. 7). The default value is ’standard’.

– .timeStep time step size required for all algorithms except for ’adaptive’.

– .taylorTerms number of Taylor terms for the computation of the exponential
matrix eA∆t (see [25, Eq. (3.2)]). Required for all algorithms
except for ’adaptive’.

– .zonotopeOrder upper bound for the zonotope order ρ (see Sec. 2.2.1.1). Required
for all algorithms except for ’adaptive’.

– .reductionTechnique string specifying the method used to reduce the zonotope order
(see Tab. 4). The default value is ’girard’.

– .partition array defining the range of dimensions each block covers. All
blocks together make up the linear system (algorithm ’decomp’

only).

– .krylovError upper bound of Krylov error as defined in [49, eq. (3)] (algorithm
’krylov’ only)

– .krylovStep step size to increase the dimension of the Krylov subspace ξ as
defined in [49, Sec. II.A] until the Krylov error is below the upper
bound defined by .krylovError (algorithm ’krylov’ only)

– .error upper bound for the error containing over-approximative terms as
defined in [50] (algorithm ’adaptive’ only). The default value
is set to one hundreth of the longest edge of the interval over-
approximation of the initial set.

X0

Rd
h

convex hull of
X0, R

d
h

Rd(τ0)

➀ ➁ ➂

enlargement

Figure 9: Steps for the computation of an over-approximation of the reachable set for a linear
system.

4.2.1.2 Operation reachInner

To obtain an inner-approximation, we compute the reachable set for piecewise-constant uncertain
inputs, which is an inner-approximation of the reachable set with uncertain inputs that can vary
arbitrarily over time. Furthermore, we compute an inner-approximation of the original zonotope
when we reduce the zonotope order.

58



4 DYNAMIC SYSTEMS AND OPERATIONS

– .timeStep time step size ∆t.

– .zonotopeOrder upper bound for the zonotope order ρ (see Sec. 2.2.1.1).

– .reductionTechnique string specifying the method used to reduce the zonotope order in
an under-approximative way. The available methods are ’sum’,
’linProg’, ’scale’. The default value is ’sum’.

4.2.2 Linear Systems with Uncertain Parameters

This class extends linear systems by uncertain parameters. We provide two implementations,
one for uncertain parameters that are fixed over time and one for parameters that can arbitrarily
vary over time. For the case with fixed parameters, a linear parametric system is defined as

ẋ(t) = A(p) x(t) +B(p) u(t), p ∈ P,

which can be equivalently formulated as

ẋ(t) = Ax(t) +Bu(t), A ∈ A, B ∈ B
with A = {A(p) | p ∈ P}, B = {B(p) | p ∈ P}, (26)

where x(t) ∈ Rn is the system state, u(t) ∈ Rm is the system input, p ∈ Rp is the parameter
vector, and P ⊂ Rp is the set of parameters. For the case with fixed parameters, a linear
parametric system is defined as

ẋ(t) = A(t) x(t) +B(t) u(t), A(t) ∈ A, B(t) ∈ B,

where A and B are defined as in (26). Linear parametric systems are implemented by the class
linParamSys. An object of class linParamSys can be constructed as follows:

sys = linParamSys(A,B)
sys = linParamSys(A,B, type)
sys = linParamSys(name,A,B)
sys = linParamSys(name,A,B, type),

where name is a string specifying the name of the system, A,B are defined as in (26), and
type is a string specifying whether the parameters are constant over time (’constParam’) or
time-varying (’varParam’). The default value for type is ’constParam’. The matrix sets A
and B can be represented by any of the matrix set representations introduced in Sec. 3. Let us
demonstrate the class linParamSys by an example:

[
ẋ1
ẋ2

]
=

[
−2 0
[1, 2] −3

] [
x1
x2

]
+

[
1
1

]
u

% system matrices

Ac = [-2 0; 1.5 -3];

Aw = [0 0; 0.5 0];

A = intervalMatrix(Ac,Aw);

B = [1; 1];

% linear parametric system

sys = linParamSys(A,B,’varParam’);

An alternative for fixed parameters is to define each parameter as a state variable x̃i with the
trivial dynamics ˙̃xi = 0. For time-varying parameters, one can specify the parameter as an
uncertain input. In both cases, the result is a nonlinear system that can be handled as described
in Sec. 4.2.5. The question of whether to compute the solution with the dedicated approach
presented in this section or with the approach for nonlinear systems has not yet been thoroughly
investigated.
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4.2.2.1 Operation reach

Reachability analysis for linear parametric systems is very similar to reachability analysis of
linear systems with known parameters. The main difference is that we have to take into account
an uncertain state matrix A and an uncertain input matrix B. We apply the algorithm from [51]
to calculate the reachable set of linear parametric systems.

The settings for reachability analysis are specified as fields of the struct options (see Sec. 4.1.1).
For linear systems, the following settings are available:

– .timeStep time step size for one reachability time step.

– .taylorTerms number of Taylor terms for the computation of the exponential
matrix eA∆t (see [25, Theorem 3.2]).

– .zonotopeOrder upper bound for the zonotope order ρ (see Sec. 2.2.1.1).

– .reductionTechnique string specifying the method used to reduce the zonotope order
(see Tab. 4). The default value is ’girard’.

– .intermediateTerms upper bound for the zonotope order ρ (see Sec. 2.2.1.1) in internal
computations of the algorithm.

– .compTimePoint flag specifying whether the reachable sets should be computed for
points in time (compTimePoint = 1) or not (compTimePoint =

0). The default value is 0.

4.2.3 Linear Discrete-Time Systems

In addition to continuous-time linear systems, CORA also supports discrete-time linear systems
defined as

x[i+ 1] = Ax[i] +Bu[i] + c+w[i]

y[i] = Cx[i] +Du[i] + k + v[i],
(27)

where x[i] ∈ Rn is the system state, u[i] ∈ Rm is the system input, w[i] ∈ Rn is the disturbance,
y[i] ∈ Rp is the system output, v[i] ∈ Rp is the sensor noise, and A ∈ Rn×n, B ∈ Rn×m, c ∈ Rn,
C ∈ Rp×n, D ∈ Rp×m, k ∈ Rp. Discrete-time linear systems are implemented by the class
linearSysDT. An object of class linearSysDT can be constructed as follows:

sys = linearSysDT(A,B,∆t)

sys = linearSysDT(A,B, c, C,D, k,∆t)

sys = linearSysDT(name, A,B,∆t)

sys = linearSysDT(name, A,B, c, C,D, k,∆t),

where name is a string specifying the name of the system, A,B, c, C,D, k are defined as in (27),
and ∆t is the sampling time specifying the time difference between x[i+ 1] and x[i].

Let us demonstrate the class linearSysDT by an example:

[
x1[i+ 1]
x2[i+ 1]

]
=

[
−0.4 0.6
0.6 −0.4

] [
x1[i]
x2[i]

]
+

[
0
1

]
u[i]

y[i] =
[
1 0

] [x1[i]
x2[i]

]

% system matrices

A = [-0.4 0.6; 0.6 -0.4];

B = [0; 1];

C = [1 0];

% sampling time

dt = 0.4;

% linear discrete-time system

sys = linearSysDT(A,B,[],C,dt);
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4.2.3.1 Operations reach / observe

The reachable set for a linear discrete-time system can be computed by set-based evaluation of
(27). After each time step, the zonotope order of the reachable set is reduced to a user-specified
order.

The settings for reachability analysis are specified as fields of the struct options (see Sec. 4.1.1).
For linear discrete-time systems, the following settings are available:

– .zonotopeOrder upper bound for the zonotope order ρ (see Sec. 2.2.1.1).

– .reductionTechnique string specifying the method used to reduce the zonotope order
(see Tab. 4). The default value is ’girard’.

4.2.4 Linear Probabilistic Systems

In contrast to all other systems, we consider stochastic properties in the class linProbSys. The
system under consideration is defined by the following linear stochastic differential equation
(SDE), which is also known as the multivariate Ornstein-Uhlenbeck process [52]:

ẋ = Ax(t) + u(t) + Cξ(t),

x(0) ∈ Rn, u(t) ∈ U ⊂ Rn, ξ ∈ Rm,
(28)

where A and C are matrices of proper dimension and A has full rank. There are two kinds of
inputs: the first input u is Lipschitz continuous and can take any value in U ⊂ Rn for which
no probability distribution is known. The second input ξ ∈ Rm is white Gaussian noise. The
combination of both inputs can be seen as a white Gaussian noise input, where the mean value
is unknown within the set U .
In contrast to the other system classes, we compute enclosing probabilistic hulls, i.e., a hull
over all possible probability distributions when some parameters are uncertain and do not have
a probability distribution. We denote the probability density function (PDF) of the random
process X(t) defined by (28) for a specific trajectory u(t) ∈ U at time t = r by fX(x, r).
The enclosing probabilistic hull (EPH) of all possible probability density functions fX(x, r) is
denoted by f̄X(x, r) and defined as: f̄X(x, r) = sup{fX(x, r)|X(t) is a solution of (28) ∀t ∈ [0, r],
u(t) ∈ U , fX(x, 0) = f0}. The enclosing probabilistic hull for a time interval is defined as
f̄X(x, [0, r]) = sup{f̄X(x, t)|t ∈ [0, r]}.
Let us demonstrate the class linearSys by an example:

[
ẋ1
ẋ2

]
=

[
−1 −4
4 −1

] [
x1
x2

]
+

[
1 0
0 1

]
u+

[
0.7 0
0 0.7

]
ξ

% system matrices

A = [-1 -4; 4 -1];

B = eye(2);

C = 0.7*eye(2);

% linear system

sys = linProbSys(’twoDimSys’,A,B,C);

4.2.4.1 Operation reach

Reachability analysis for linear probabilistic systems is similar to reachability analysis of linear
systems without stochastic uncertainty. The main difference is that the solution for time intervals
has to be enclosed by the aforementioned enclosing probabilistic hulls [35].
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The settings for reachability analysis are specified as fields of the struct options (see Sec. 4.1.1).
For stochastic linear systems, the following settings are available:

– .timeStep time step size.

– .taylorTerms number of Taylor terms for the computation of the exponential
matrix eA∆t (see [25, Sec. 4.2.4]).

– .zonotopeOrder upper bound for the zonotope order ρ (see Sec. 2.2.1.1).

– .reductionTechnique string specifying the method used to reduce the zonotope order
(see Tab. 4). The default value is ’girard’.

– .gamma scalar value specifying the size of the confidence set of normal
distributions. The probability outside the confidence set is not
computed, but added as a global probability of entering an unsafe
set as discussed in [25, Sec. 4.2.3].

4.2.5 Nonlinear Systems

Although a fairly large group of dynamic systems can be described by linear systems, the exten-
sion to nonlinear systems is an important step towards the analysis of more complex systems.
We consider general nonlinear continuous systems defined by the differential equation

ẋ(t) = f(x(t), u(t)), (29)

y(t) = g(x(t), u(t)), (30)

where x(t) ∈ Rn is the system state, u(t) ∈ Rm is the system input, y(t) ∈ Ro is the system
output, and f : Rn × Rm → Rn and g : Rn × Rm → Ro are sufficiently smooth.

Nonlinear systems are implemented by the class nonlinearSys. An object of class nonlinearSys
can be constructed as follows:

sys = nonlinearSys(fun)

sys = nonlinearSys(name, fun)

sys = nonlinearSys(fun, n,m)

sys = nonlinearSys(name, fun, n,m),

sys = nonlinearSys(fun, outFun)

sys = nonlinearSys(name, fun, outFun)

sys = nonlinearSys(fun, n,m, outFun, o)

sys = nonlinearSys(name, fun, n,m, outFun, o),

where name is a string specifying the name of the system, fun is a MATLAB function handle
defining the function f(x(t), u(t)) in (29), n is the number of states (see (29)), and m is the
number of inputs (see (29)), outFun is the output equation in (30) and o is the number of outputs
(see (30)). If the number of states n, the number of inputs m, and the number of outputs o are
not provided, they are automatically determined from the function handle fun. If no output
equation is provided, we assume y = x. Let us demonstrate the class nonlinearSys by an
example:
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[
ẋ1
ẋ2

]
=

[
x2 + u

(1− x21)x2 − x1

]
% differential equation f(x,u)

f = @(x,u) [x(2) + u;

(1-x(1)ˆ2)*x(2)-x(1)];

% nonlinear system

sys = nonlinearSys(f);

4.2.5.1 Operation reach

Reachability analysis of nonlinear systems is much more complicated compared to linear sys-
tems, because many valuable properties are no longer valid. One of them is the superposition
principle, which allows one to obtain the homogeneous and the inhomogeneous solution sepa-
rately. Another advantage of linear systems is that the reachable set can be computed by a
linear map in the absence of uncertain inputs. This makes it possible to exploit that geometric
representations, such as ellipsoids, zonotopes, and polytopes, are closed under linear transfor-
mations, i.e., they are again mapped to ellipsoids, zonotopes, and polytopes, respectively. In
CORA, reachability analysis of nonlinear systems is based on state-space abstraction. We con-
sider abstraction by linear systems as presented in [25, Section 3.4] and by polynomial systems
as presented in [30]. Since the abstraction causes additional errors, the abstraction errors are
determined in an over-approximative way and added as an additional uncertain input to ensure
an over-approximative computation.

➀

➁

➂

➃

➄

➅

➆

Initial set: R(0) = X0, time step: k = 1

Compute system abstraction (linear/polynomial)

Obtain required abstraction errors L̄ heuristically

Compute Rabstract(τk) of ẋ(t) ∈ fabstract(x(t), u(t)) ⊕ L̄

Compute L based on Rabstract(τk)

L ⊆ L̄ ? Enlarge L̄

Compute R(τk) of ẋ(t) ∈ fabstract(x(t), u(t)) ⊕ L

Cancellation of redundant reachable sets

Next initial set: R(tk+1), time step: k := k + 1

Yes

No

Figure 10: Computation of reachable sets for nonlinear systems – overview.

A brief visualization of the overall concept for computing the reachable set is shown in Fig. 10.
As in the previous approaches, the reachable set is computed iteratively for time intervals t ∈
τk = [k r, (k + 1)r] where k ∈ N+. The procedure for computing the reachable sets of the
consecutive time intervals is as follows:

➀ The nonlinear system ẋ(t) = f(x(t), u(t)) is either abstracted to a linear system as shown
in (25), or after introducing z = [xT , uT ]T , to a polynomial system resulting from the
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computation of a Taylor series of order κ:

ẋi ∈
κ−1∑

j=0

(
(z(t)− z∗)T∇

)j
fi(z

∗)

j!
︸ ︷︷ ︸

fabstract
i (x,u)

⊕ Li(t), (31)

where the Nabla operator is defined as ∇ =
∑n+m

i=1 ei
∂
∂zi

with ei ∈ Rn+m being orthogonal

unit vectors. The set of abstraction errors L ensures that f(x, u) ∈ fabstract(x, u) ⊕ L,
which allows the reachable set to be computed in an over-approximative way.

➁ Next, the set of required abstraction errors L̄ is obtained heuristically.

➂ The reachable set Rabstract(τk) of ẋ(t) ∈ fabstract(x(t), u(t)) ⊕ L̄ is computed.

➃ The set of abstraction errors L is computed based on the reachable set Rabstract(τk).

➄ As long as L * L̄, the abstraction error is not admissible, requiring the assumption L̄ to
be enlarged. If several enlargements are not successful, one has to split the reachable set
and continue with one more partial reachable set.

➅ If L ⊆ L̄, the abstraction error is accepted and the reachable set is obtained by using the
tighter abstraction error: ẋ(t) ∈ fabstract(x(t), u(t)) ⊕ L.

➆ It remains to increase the time step (k := k+1) and cancel redundant reachable sets that
are already covered by previously-computed reachable sets. This decreases the number of
reachable sets that have to be considered in the next time interval.

The necessity of splitting reachable sets is indicated in the workspace outputs using the key-
word split. In general, reachable sets of nonlinear systems are non-convex. Therefore, tight
enclosures of the reachable set can often be better achieved by a non-convex set representation.
For strongly nonlinear systems, we therefore recommend the conservative polynomialization
algorithm (see Tab. 10) in combination with polynomial zonotopes (see Sec. 2.2.1.5).

Table 10: Reachability algorithms for nonlinear systems.

algorithm description literature

lin conservative linearization [9] and [25, Section 3.4]
lin-adaptive conservative linearization with [53]

adaptive parameter tuning
poly conservative polynomialization [30]
poly-adaptive conservative polynomialization with [53]

adaptive parameter tuning
linRem abstraction by linear parametric system –

The settings for reachability analysis are specified as fields of the struct options (see Sec. 4.1.1).
The following settings are available. (Note that all but options.alg are redundant if options.alg
is set to lin-adaptive or poly-adaptive):

– .alg string specifying the used reachability algorithm (see
Tab. 10).

– .timeStep time step size for one reachability time step.

– .tensorOrder order κ of the Taylor series expansion for the abstraction in
(31) of the dynamic function. The recommended values are
κ = 2 or κ = 3.
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– .tensorOrderOutput order κ of the Taylor series expansion for the abstraction in
(31) of the output function. The recommended values are
κ = 2 or κ = 3.

– .taylorTerms number of Taylor terms for the computation of the expo-
nential matrix eA∆t (see [25, Eq. (3.2)]) for the linearized
system.

– .zonotopeOrder upper bound for the zonotope order ρ (see Sec. 2.2.1.1).

– .reductionTechnique string specifying the method used to reduce the zonotope
order (see Tab. 4). The default value is ’girard’.

– .errorOrder the zonotope order ρ (see Sec. 2.2.1.1) is reduced to
errorOrder internally before the linearization error is com-
puted. This is done since the computation of the lineariza-
tion error involves quadratic or even cubic maps that dras-
tically increase the number of generators of the set.

– .intermediateOrder upper bound for the zonotope order ρ (see Sec. 2.2.1.1) dur-
ing internal computations of the algorithm.

– .maxError vector of dimension Rn specifying the upper bound for the
admissble abstraction error L for each system dimension. If
the abstraction error exceeds the bound, the reachable set
is splitted (see Step. 5 in Fig. 10). The default value is ∞
(no splitting).

– .reductionInterval number of time steps after which redundant sets resulting
from splitting are cancelled (see Step. 7 in Fig. 10). The
default value is ∞ (no cancellation).

– .lagrangeRem struct containing settings for evaluating the Lagrange re-
mainder L (see Tab. 21).

– .polyZono struct containing settings for restructuring polynomial zono-
topes (see Tab. 19). Only to be used for algorithm ’poly’

and if polynomial zonotopes are used to represent the reach-
able set.

4.2.5.2 Operation reachInner

To compute inner-approximations of reachable sets for nonlinear systems, CORA implements
three different algorithms: The set scaling approach from [54] (options.algInner = ’scale’)
which represents inner-approximations with polynomial zonotopes, the approach from [55] (options.algInner
= ’parallelo’) that represents inner-approximations with parallelotopes, and the Picard-Lindelöf
iteration based approach from [56] (options.algInner = ’proj’). While the algorithms ’parallelo’
and ’scale’ compute full inner-approximations, the algorithm ’proj’ only computes an inner-
approximation of the projection onto a single dimension.

The settings for reachability analysis are specified as fields of the struct options (see Sec. 4.1.2).
The following settings are available:

– .algInner string specifying the used reachability algorithm. The available algorithms
are ’scale’ (algorithm from [54]), ’parallelo’ (algorithm [55]), and ’proj’

(algorithm from [56]).
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Settings for Scaling Algorithm:

– .timeStep time step size for one reachability time step for the compu-
tation of the outer-approximation (see Sec. 4.2.5.1).

– .timeStepInner time step size for the inner-approximation, which has to be
a multiple of the time step size for the outer-approximation.
If set to ’end’, only the inner-approximation at the final
time is computed. The default value is ’end’.

– .contractor string specifying the contractor that is applyied to properly
scale the reachable set (see Tab. 22). The default value is
’linearize’.

– .orderInner zonotope order ρ (see Sec. 2.2.1.1) for the inner-
approximation. The default value is 5.

– .splits number of recusive splits for the contraction (see Sec. 6.8).
The default value is 8.

– .iter number of consequtive contractions applied (see Sec. 6.8).
The default value is 2.

– .scaleFac scaling factor ∈ ]0, 1] applied to scale the initial guess de-
termined with nonlinear programming. If set to ’auto’ the
optimal scaling factor is determined automatically. The de-
fault value is ’auto’.

– .inpChanges number of input changes of the piecewise-constant input sig-
nals used to approximate time-varying inputs. The default
value is 0.

– .taylorTerms setting for computing the outer-approximation of the reach-
able set (see Sec. 4.2.5.1).

– .zonotopeOrder setting for computing the outer-approximation of the reach-
able set (see Sec. 4.2.5.1).

– .reductionTechnique setting for computing the outer-approximation of the reach-
able set (see Sec. 4.2.5.1).

– .errorOrder setting for computing the outer-approximation of the reach-
able set (see Sec. 4.2.5.1).

– .intermediateOrder setting for computing the outer-approximation of the reach-
able set (see Sec. 4.2.5.1).

– .polyZono setting for computing the outer-approximation of the reach-
able set (see Sec. 4.2.5.1).

Settings for Parallelotope Algorithm:

The settings are identical to the settings for reachability analysis of nonlinear systems, which
are documented in Sec. 4.2.5.1.

Settings for Projection Algorithm:
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– .timeStep time step size for one reachability time step for the computation of the outer-
approximation as well as the inner-approximation.

– .taylorOrder Taylor order k for the Taylor series expansion in solution space (see [56, Eq.
(6)] and [56, Alg. 1]).

– .taylmOrder upper bound for the polynomial degree of the Taylor model monomials (see
Sec. 2.2.3.1)

4.2.6 Nonlinear Systems with Uncertain Parameters

Nonlinear parametric systems extend nonlinear systems by additionally considering uncertain
parameters p:

ẋ(t) = f(x(t), u(t), p), p ∈ P ⊂ Rp, (32)

y(t) = g(x(t), u(t), p) (33)

where x(t) ∈ Rn is the system state, u(t) ∈ Rm is the system input, p ∈ Rp is the parameter
vector, y(t) ∈ Ro is the system output, and f : Rn×Rm×Rp → Rn and g : Rn×Rm×Rp → Ro

are sufficiently smooth. As for linear parametric systems (see Sec. 4.2.2), the parameters p ∈ P
can be constant over time or time-varying.

Nonlinear parametric systems are implemented by the class nonlinParamSys. An object of class
nonlinearSys can be constructed as follows:

sys = nonlinParamSys(fun)

sys = nonlinParamSys(fun, type)

sys = nonlinParamSys(name, fun)

sys = nonlinParamSys(name, fun, type)

sys = nonlinParamSys(fun, n,m, p)

sys = nonlinParamSys(fun, n,m, p, type)

sys = nonlinParamSys(name, fun, n,m, p)

sys = nonlinParamSys(name, fun, n,m, p, type),

sys = nonlinParamSys(fun, outFun)

sys = nonlinParamSys(fun, type, outFun)

sys = nonlinParamSys(name, fun, outFun)

sys = nonlinParamSys(name, fun, type, outFun)

sys = nonlinParamSys(fun, n,m, p, outFun, o)

sys = nonlinParamSys(fun, n,m, p, type, outFun, o)

sys = nonlinParamSys(name, fun, n,m, p, outFun, o)

sys = nonlinParamSys(name, fun, n,m, p, type, outFun, o),

where name is a string specifying the name of the system, fun is a MATLAB function handle
defining the function f(x(t), u(t), p) in (32), n is the number of states (see (32)), m is the number
of inputs (see (32)), p is the number of parameters (see (32)), type is a string that specifies if
the parameter are constant over time (’constParam’) or time-varying (’varParam’), outFun is
a MATLAB function handle defining the function g(x(t), u(t), p) in (33), and o is the number
of outputs (see (33)). The default value for type is ’constParam’. If the number of states
n, the number of inputs m, the number of parameters p, and the number of outputs o are
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not provided, they are automatically determined from the function handle fun. If no output
equation is provided, we assume y = x. Let us demonstrate the class nonlinParamSys by an
example:

[
ẋ1
ẋ2

]
=

[
x2 + u

p(1− x21)x2 − x1

]
% differential equation f(x,u,p)

f = @(x,u,p) [x(2) + u;

p*(1-x(1)ˆ2)*x(2)-x(1)];

% nonlinear parametric system

sys = nonlinParamSys(f);

An alternative to nonlinear parametric systems with constant parameters is to define each pa-
rameter as a state variable x̃i with the trivial dynamics ˙̃xi = 0. Time-varying parameters can be
equivalently modeled as uncertain inputs. For both cases the result is a nonlinear system that
can be handled as described in Sec. 4.2.5. The question whether to compute the solution with
the dedicated approach presented in this section or with the approach for nonlinear systems has
not yet been thoroughly investigated.

4.2.6.1 Operation reach

For reachability analysis of nonlinear parametric systems we use the same algorithms and set-
tings as for nonlinear systems (see Sec. 4.2.5.1). The only difference is that the conservative
polynomialization algorithm [30] (options.alg = ’poly’) is yet only implemented for param-
etic systems for which the set of uncertain parameters P (see (32)) is a single point instead of
a set.

4.2.7 Nonlinear Discrete-Time Systems

In this section, we consider nonlinear discrete-time systems defined as

x[i+ 1] = f
(
x[i], u[i]

)
, (34)

y[i] = g
(
x[i], u[i]

)
, (35)

where x[i] ∈ Rn is the system state, u[i] ∈ Rm is the system input, y[i] is the system out-
put, and f : Rn × Rm → Rn and g : Rn × Rm → Ro are continuous functions. Nonlinear
discrete-time systems are implemented in CORA by the class nonlinearSysDT. An object of
class nonlinearSysDT can be constructed as follows:

sys = nonlinearSysDT(fun,∆t),

sys = nonlinearSysDT(name, fun,∆t),

sys = nonlinearSysDT(fun,∆t, n,m),

sys = nonlinearSysDT(name, fun,∆t, n,m),

sys = nonlinearSysDT(fun,∆t, outFun),

sys = nonlinearSysDT(name, fun,∆t, outFun),

sys = nonlinearSysDT(fun,∆t, n,m, outFun, o),

sys = nonlinearSysDT(name, fun,∆t, n,m, outFun, o),

where name is a string specifying the name of the system, fun is a MATLAB function handle
defining the function f(x[i], u[i]) in (34), ∆t is the sampling time specifying the time difference
between x[i+1] and x[i], n is the number of states (see (34)), and m is the number of inputs (see
(34)), outFun is a MATLAB function handle defining the function g(x[i], u[i]) in (35), and o is
the number of outputs. If the number of states n, the number of inputs m, and the number of
outputs o are not provided, they are automatically determined from the function handle fun. If
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no output equation is provided, we assume y = x. Let us demonstrate the class nonlinearSysDT
by an example:



x1[i+ 1]
x2[i+ 1]
x3[i+ 1]


 =




x1[i] + u1[i]
x2[i] + u2[i] cos(x1[i])
x3[i] + u2[i] sin(x1[i])




% equation f(x,u)

f = @(x,u) [x(1) + u(1); ...

x(2) + u(2)*cos(x(1)); ...

x(3) + u(2)*sin(x(1))];

% sampling time

dt = 0.25;

% nonlinear discrete-time system

sys = nonlinearSysDT(f,dt);

4.2.7.1 Operations reach / observe

Since the system evolves in discrete time, the task of calculating the reachable set is identical
to the computation of the image of the nonlinear function f(x[i], u[i]) in (34) for x[i] ∈ Xi and
u[i] ∈ U . Similar to continuous-time nonlinear systems, we abstract the nonlinear function by a
Taylor series of order κ:

xl[i+ 1] ∈
κ−1∑

j=0

(
(z[i] − z∗)T∇

)j
fl(z

∗)

j!
︸ ︷︷ ︸

fabstract
l

(x[i],u[i])

⊕ Ll[i], (36)

where z[i] = [x[i]T u[i]T ]T and the Nabla operator is defined as ∇ =
∑n+m

i=1 ei
∂
∂zi

with ei ∈
Rn+m being orthogonal unit vectors. The set of abstraction errors L ensures that f(x, u) ∈
fabstract(x[i], u[i])⊕L, which allows the reachable set to be computed in an over-approximative
way.

The settings for reachability analysis are specified as fields of the struct options (see Sec. 4.1.1).
For nonlinear discrete-time systems the following settings are available:

– .tensorOrder order κ of the Taylor series expansion for the abstraction of
the dynamic function in (36). The recommended values are
κ = 2 or κ = 3.

– .tensorOrderOutput order κ of the Taylor series expansion for the abstraction of
the output function. The recommended values are κ = 2 or
κ = 3.

– .zonotopeOrder upper bound for the zonotope order ρ (see Sec. 2.2.1.1).

– .reductionTechnique string specifying the method used to reduce the zonotope
order (see Tab. 4). The default value is ’girard’.

– .errorOrder the zonotope order ρ (see Sec. 2.2.1.1) is reduced to
errorOrder internally before the linearization error is com-
puted. This is done since the computation of the lineariza-
tion error involves quadratic or even cubic maps that dras-
tically increase the number of generators of the set.

– .lagrangeRem struct containing settings for evaluating the Lagrange re-
mainder L (see Tab. 21).

– .polyZono struct containing settings for restructuring polynomial zono-
topes (see Tab. 19). Only to be used in reach for algorithm
’poly’ and if polynomial zonotopes are used to represent
the reachable set.
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4.2.8 Nonlinear Differential-Algebraic Systems

The class nonlinDASys considers time-invariant, semi-explicit, index-1 differential-algebraic sys-
tems defined as

ẋ = f(x(t), y(t), u(t))

0 = g(x(t), y(t), u(t)),

z = h(x(t), y(t), u(t)),

(37)

where x(t) ∈ Rn is the vector of differential variables, y(t) ∈ Rq is the vector of algebraic
variables, u(t) ∈ Rm is the vector of inputs, z(t) ∈ Ro is the system output, and f : Rn × Rq ×
Rm → Rn, g : Rn×Rq×Rm → Rq, and h : Rn×Rq×Rm → Ro are sufficiently smooth continuous
functions. The initial state is consistent when g(x(0), y(0), u(0)) = 0, while for DAEs with an
index greater than 1, further hidden algebraic constraints have to be considered [57, Chapter

9.1]. For an implicit DAE, the index-1 property holds if and only if ∀t : det(∂g(x(t),y(t),u(t))∂y ) 6= 0,
i.e., the Jacobian of the algebraic equations is non-singular [58, p. 34]. Loosely speaking, the
index specifies the distance to an ODE (which has index 0) by the number of required time
differentiations of the general form 0 = F ( ˙̃x, x̃, u, t) along a solution x̃(t), in order to express ˙̃x
as a continuous function of x̃ and t [57, Chapter 9.1].

Nonlinear differential-algebraic systems are implemented by the class nonlinDASys. An object
of class nonlinDASys can be constructed as follows:

sys = nonlinDASys(dynFun, conFun),

sys = nonlinDASys(name, dynFun, conFun),

sys = nonlinDASys(dynFun, conFun, n,m, q),

sys = nonlinDASys(name, dynFun, conFun, n,m, q),

sys = nonlinDASys(dynFun, conFun, outFun),

sys = nonlinDASys(name, dynFun, conFun, outFun),

sys = nonlinDASys(dynFun, conFun, n,m, q, outFun, o),

sys = nonlinDASys(name, dynFun, conFun, n,m, q, outFun, o),

where name is a string specifying the name of the system, dynFun is a MATLAB function
handle defining the function f(x(t), y(t), u(t)) in (37), conFun is a MATLAB function handle
defining the function g(x(t), y(t), u(t)) in (37), outFun is a MATLAB function handle defining
the function h(x(t), y(t), u(t)) in (37), n is the number of states (see (37)), m is the number of
inputs (see (37)), q is the number of algebraic constraints (see (37)), and o is the number of
outputs (see (37). If the number of states n, the number of inputs m, the number of constraints
q, and the number of outputs o are not provided, they are automatically determined from the
function handles dynFun and conFun. If no output equation is provided, we assume z = x. Let
us demonstrate the class nonlinDASys by an example:

ẋ = x+ 1 + u

0 = (x+ 1)y + 2

% differential equation f(x,y,u)

f = @(x,y,u) x + 1 + u;

% constraint equation g(x,y,u)

g = @(x,y,u) (x+1)*y + 2;

% nonlinear differential-algebraic system

sys = nonlinDASys(f,g);

Parametric uncertainties as demonstrated in Sec. 4.2.6 have not yet been implemented, but
one can consider uncertain parameters using the existing techniques: for uncertain but fixed
parameters, one can define each parameter as a state variable x̃i with the trivial dynamics
˙̃xi = 0 and for time-varying parameters, one can specify the parameter as an uncertain input.
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4.2.8.1 Operation reach

For nonlinear differential-algebraic systems, CORA uses the algorithm in [59] to compute the
reachable set. To apply the methods presented in Sec. 4.2.5.1, the algorithm performs an abstrac-
tion of the original nonlinear DAEs to linear differential inclusions for each consecutive time inter-
val τk. A different abstraction is used for each time interval to minimize the over-approximation
error. Based on a linearization of the functions f(x(t), y(t), u(t)) and g(x(t), y(t), u(t)), one can
abstract the dynamics of the original nonlinear DAE by a linear system plus additive uncertainty
as detailed in [59, Section IV]. This linear system only contains dynamic state variables x and
uncertain inputs u. The algebraic state y is obtained afterwards by the linearized constraint
function g(x(t), y(t), u(t)) as described in [59, Proposition 2].

In contrast to ordinary differential equations, the initial state for differential-algebraic systems
is not automatically consistent. One therefore has to specify a guess for a consistent initial
algebraic state with the additional parameter params.y0guess (see Sec. 4.1). Depending on the
guess, a consistent initial algebraic state is found using the Newton-Raphson method.

The settings for reachability analysis are specified as fields of the struct options (see Sec. 4.1.1).
For nonlinear differential-algebraic systems, the following settings are available:

– .timeStep time step size for one reachability time step.

– .tensorOrder order κ of the Taylor series expansion for the abstraction
in [59, eq. (8)]. The recommended values are κ = 2 or κ = 3.

– .tensorOrderOutput order κ of the Taylor series expansion for the abstraction of
the output function. The recommended values are κ = 2 or
κ = 3.

– .taylorTerms number of Taylor terms for the computation of the expo-
nential matrix eA∆t (see [25, Eq. (3.2)]) for the linearized
system.

– .zonotopeOrder upper bound for the zonotope order ρ (see Sec. 2.2.1.1).

– .reductionTechnique string specifying the method used to reduce the zonotope
order (see Tab. 4). The default value is ’girard’.

– .errorOrder the zonotope order ρ (see Sec. 2.2.1.1) is reduced to
errorOrder internally before the linearization error is com-
puted. This is done since the computation of the lineariza-
tion error involves quadratic or even cubic maps that dras-
tically increase the number of generators of the set.

– .intermediateOrder upper bound for the zonotope order ρ (see Sec. 2.2.1.1) in
internal computations of the algorithm.

– .maxError x vector of dimension Rn specifying the upper bound for the
admissible abstraction error L for each system dimension of
the dynamic equation f(x(t), y(t), u(t)) (see (37)). If the
abstraction error exceeds the bound, the reachable set is
split (see Step. 5 in Fig. 10). The default value is ∞ (no
splitting).
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– .maxError y vector of dimension Rq specifying the upper bound for the
admissible abstraction error L for each system dimension
of the constraint equation g(x(t), y(t), u(t)) (see (37)). If
the abstraction error exceeds the bound, the reachable set
is split (see Step. 5 in Fig. 10). The default value is ∞ (no
splitting).

– .reductionInterval number of time steps after which redundant sets resulting
from splitting are cancelled (see Step. 7 in Fig. 10). The
default value is ∞ (no cancellation).

– .lagrangeRem struct containing settings for evaluating the Lagrange re-
mainder L (see Tab. 21).

4.2.9 Neural Network Controlled Systems

Due to the current trend towards artificial intelligence, the system class of neural network
controlled system is gaining more and more importance. In CORA, we consider neural network
controlled systems with discrete feedback, where the neural network controller updates the
control input at the end of the time steps defined by the sampling time ∆t. CORA implements
the approach described in [1].

Neural Network 

Controller

Open-Loop 

System Sampler

Figure 11: Structure of a neural network controlled system.

Neural network controlled systems are implemented by the class neurNetContrSys. An object
of class neurNetContrSys can be constructed as follows:

sys = neurNetContrSys(sysOL,neurNet,∆t),

where sysOL is a child of class contDynamics (see Fig. 1) describing the dynamics of the open-
loop system, neurNet is an object of class neuralNetwork (see Sec. 6.9) storing the neural
network controller, and ∆t ∈ R>0 is the sampling time of the controller. Note that the dynamics
of the open-loop system can be specified by any of the system classes described in Sec. 4.2 (e.g.
linearSys, nonlinearSys, etc.). Since CORA does not explicitly distinguish between control
inputs and uncertain inputs, we treat the first N inputs of the open-loop system as control
inputs and the remaining inputs as uncertain inputs, where N is the number of outputs of the
neural network controller. Let us demonstrate the class neurNetContrSys by an example:
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% open-loop system

f = @(x,u) [x(2) + u(2); (1-x(1)ˆ2)*x(2) - x(1) + u(1)];

sysOL = nonlinearSys(f);

% neural network controller

W1 = rand(100,2); b1 = rand(100,1);

W2 = rand(1,100); b2 = rand(1,1);

nn = neuralNetwork({

nnLinearLayer(W1, b1);

nnReLULayer();

nnLinearLayer(W2, b2);

nnReLULayer();

})

% neural network controlled system

dt = 0.01;

sys = neurNetContrSys(sysOL,nn,dt);

R = reach(sys, params, options, evParams);

where params and options are the settings for reachability analysis for sysOL, which are identical
to the settings for the respective open-loop system class (Sec. 4.2). evParams are the settings for
the evaluation of the neural network neurNet (see Sec. 6.9). Further examples of neural network
controlled systems can be found at cora/examples/contDynamics/neurNetContrSys/.

4.3 Hybrid Dynamics

Hybrid systems consist of a finite number of state space regions for each of which specific
continuous dynamics are defined. We refer to these regions as locations. Besides a continuous
state x, there consequently also exists a discrete state v representing current location. The
continuous initial state may take values within continuous sets while only a single initial discrete
state is assumed without loss of generality20. The switching of the continuous dynamics is
triggered by guard sets. Jumps in the continuous state are considered after the discrete state
has changed. One of the most intuitive examples where jumps in the continuous state can occur,
is the bouncing ball example (see Fig. 12), where the velocity of the ball changes instantaneously
when hitting the ground.

In CORA, hybrid systems are modeled by hybrid automata. A hybrid automaton HA =
(L1, . . . , Lp) as considered in CORA is defined by a finite list of locations (L1, . . . , Lp), where
each location Li = (fi(·),Si,Ti), i = 1, . . . , p consists of

• a differential equation ẋ(t) = fi(·) describing the continuous dynamics,

• an invariant set Si ⊂ Rn describing the region where the differential equation is valid,

• a list Ti = (T1, . . . , Tq) of transitions Tj = (Gj , rj(·), dj), j = {1, . . . , q} from the current
location to other locations, where Gj ⊂ Rn is a guard set, rj : Rn → Rn is a reset function,
and dj ∈ {1, . . . , p} is the index of the target mode.

The evolution of the hybrid automaton is described informally as follows: Starting from an initial
location v(0) ∈ {1, . . . , p} and an initial state x(0) ∈ Sv(0), the continuous state evolves according
to the flow function ẋ(t) = fv(0)(·) that is assigned to the location v(0). If the continuous state
is within a guard set Gj of a transition Tj , the transition Tj can be taken and has to be taken
if the state would otherwise leave the invariant Sv(0). When the transition from the previous
location v(0) to the next location dj is taken, the system state is updated according to the reset

20In the case of several initial discrete states, the reachability analysis can be performed for each discrete state
separately.
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function rj(·). Afterwards, the continuous state evolves according to the flow function of the
next location.

s0

v0

g

HA = (L1)

L1 = (f1(·),S1, (T1))

f1(x, u) =

[

x2

−g

]

, g = 9.81

S1 =
{

[x1 x2]
T ∈ R2

∣

∣

∣
x2 ≥ 0

}

T1 = (G1, r1(·), 1)
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[x1 x2]
T ∈ R2

∣

∣

∣
x1 = 0, x2 ≤ 0

}

r(x) =

[

x1

−αx2

]

, α = 0.75

Figure 12: Example for a hybrid system: bouncing ball.

A simple example for a hybrid system is the bouncing ball shown in Fig. 12, where the continuous
system states are the vertical position x1 = s and the vertical velocity x2 = v, and α ∈ [0, 1] is
the rebound factor that indirectly models the loss of energy during the collision with the ground.
We will use the bouncing ball as a running example throughout this section.

Transitions between two locations are modeled in CORA by the class transition. An object
of class transition can be constructed as follows:

T = transition(G, r(·), d),
T = transition(G, r(·), d, label), (38)

where

• G ⊂ Rn is the guard set. Guard sets can be modeled by all set representations described
in Sec. 2.2. Most commonly, guard sets are modeled as conHyperplane, mptPolytope, or
levelSet objects. The guard set can also be left empty which results in an instantaneous
transition, i.e., the guard set is active as soon as the location containing the transition of
that guard set is entered. This feature is only advisable to be used in combination with
synchronization labels (see below).

• r : Rn → Rn is the reset function. CORA supports linear reset functions defined as

r(x, u) = Ax+Bu+ c, A ∈ Rn×n, B ∈ Rn×m, c ∈ Rn (39)

as well as nonlinear reset functions. The reset function is specified as a struct. For linear
reset functions this struct has the fields A, B, c that store the matrices A, B, and the
vector c in (39). For nonlinear reset functions the struct has one single field f that stores
a MATLAB function handle that defines the nonlinear reset function r(x, u).

• d ∈ {1, . . . , p} is the index of the target location.

• label is the synchronization label (only class parallelHybridAutomata): All transitions
with the same synchronization label are executed simulaneously under the condition that
the corresponding guard sets of all transitions are triggered. Currently, CORA only allows
one transition of the set of transitions with the same synchronization label to have a non-
empty guard set. Consequently, all transitions trigger if the one guard set is triggered.
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For the bouncing ball example in Fig. 12, the transition T1 can be constructed as follows:

% guard set

guard = conHyperplane([1 0],0,[0 1],0);

% reset function

reset.A = [1 0; 0 -0.75]; reset.B = [0; 0]; reset.c = [0;0];

% transtition object

trans = transition(guard,reset,1);

The locations of a hybrid automaton are modeled in CORA by the class location. An object
of class location can be constructed as follows:

L = location(S,T, f(·))
L = location(name,S,T, f(·)), (40)

where

• name is a string that specifies the name of the location.

• S ⊂ Rn is the invariant set. Invariant sets can be modeled by all set representations
described in Sec. 2.2. Most commonly, guard sets are modeled as mptPolytope or levelSet
objects.

• T = (T1, . . . , Tj) is the list of transitions from the current location to other locations
represented as a MATLAB cell array. Transitions are modeled by the class transition

(see (38)).

• ẋ = f(·) is the differential equation that describes the continuous dynamics in the current
location. The continous dynamics can be modeled by any of the system classes described
in Sec. 4.2.

For the bouncing ball example in Fig. 12, the location L1 can be constructed as follows:

% differential equation

sys = linearSys([0 1;0 0],[0;0],[0;-9.81]);

% invariant set

inv = mptPolytope([-1 0],0);

% location object

loc = location(inv,{trans},sys);

4.3.1 Hybrid Automata

A hybrid automaton is modeled by the class hybridAutomaton. An object of class hybridAutomaton
can be constructed as follows:

HA = hybridAutomaton(L),

where L = (L1, . . . , Lp) is a list of location objects represented as a MATLAB cell array. Loca-
tions are modeled by the class location (see (40)).

The hybrid automaton for the bouncing ball example in Fig. 12 can be constructed as follows:
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% list of locations

locs{1} = loc;

% hybrid automaton object

HA = hybridAutomaton(locs);

4.3.1.1 Operation reach

For reachability analysis, we consider a set of initial states X0 ⊆ Sv(0) and a set of uncertain
inputs U ⊂ Rm. The set of uncertain inputs can be different for each location of the hybrid
automaton. An illustration of a reachable set of a hybrid automaton is provided in Fig. 13.
To calculate the reachable set inside a single location, CORA uses the reachability algorithms
for continuous systems described in Sec. 4.2. The most challenging part in reachability analysis
for hybrid automata is the computation of the intersection between the reachable set and the
guard set. CORA supports multiple methods for the calculation of guard intersections, which
are listed in Tab. 17. For the intersection methods polytope, zonoGirard, conZonotope, and
nondetGuard (see Tab. 17), the intersection with the guard set is enclosed by one or multiple
oriented hyperrectangles. CORA supports the three methods listed in Tab. 16 to calculate the
orientation of these hyperrectangles. The resulting hyperrectangles for the different enclosure
methods are visualized in Fig. 14. If multiple enclosure methods are specified, the reachable set
is enclosed by the intersection of all computed hyperrectangles (see Fig. 14 (right)).

initial set

reachable set guard sets

guard sets

jump

etc.

invariant

unsafe set

x1

x2

location v1 location v2

Figure 13: Illustration of the reachable set of a hybrid automaton.

The settings for reachability analysis are specified as fields of the struct options (see Sec. 4.1.1).
For hybrid automata the settings for the involved continuous dynamics objects (see Sec. 4.2)
have to be provided. In addition, the following settings specific to hybrid automata are available:
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– .guardIntersect string specifying the method used to calculate the intersec-
tions with the guard sets. The available methods are listed
in Tab. 17.

– .enclose cell array storing the strings that describe the methods for
enclosing the intersections with the guard sets. The avail-
able methods are listed in Tab. 16. Required for the guard
intersection methods polytope, zonoGirard, conZonotope,
and nondetGuard.

– .guardOrder upper bound for the zonotope order ρ (see Sec. 2.2.1.1). The
zonotope order is reduced to guardOrder before the intersec-
tions with the guard sets are calculated in order to decrease
the computation time. Required for the guard intersection
methods conZonotope and hyperplaneMap.

– .timeStep time step size for one reachability time step. One can choose
different time steps for each location by specifying timeStep
as a cell array.

– .intersectInvariant flag with value true or false specifying whether the com-
puted reachable set is intersected with the invariant set to
obtain a tighter enclosure. The default value is false (no
intersection).

Furthermore, it is possible for hybrid automata to specify the set of uncertain inputs params.U,
the time step options.timeStep, and the specification spec (see Sec. 4.1.1) as a MATLAB cell
array with as many entries as the hybrid automaton has locations if the values are different for
each location.

Table 16: Methods for enclosing guard intersections.

method description reference

box The intersection is enclosed with an axis-aligned box. Sec. V.A.a in [34]
pca The orientation of the hyperrectangle is determined using

principal component analysis.
Sec. V.A.b in [34]

flow The orientation of the hyperrectangle is determined based
on the direction of the flow of the dynamic function.

Sec. V.A.d in [34]

4.3.2 Parallel Hybrid Automata

Complex systems can often be modeled as a connection of multiple distinct subcomponents,
where each of these subcomponents represents a hybrid automaton. A naive approach to analyze
these type of systems would be to construct a flat hybrid automaton from the interconnection of
subcomponents (parallel composition, see e.g., [65, Def. 2.9]). This technique, however, requires
calculating all possible combinations of subsystem locations, and therefore suffers from the curse
of dimensionality: Consider for example a system consisting of 15 subcomponents, where each
subcomponent has 10 discrete locations. The flat hybrid automaton for this system would consist
of 1015 discrete locations.

This exponential increase in the number of locations can be avoided if the overall system is
modeled as a parallel hybrid automaton. In this case, the system is described by a list of
hybridAutomaton objects representing the subcomponents and by connections between these
components. The flow function, the invariant set, and the guard sets for a location of the
composed system are computed on-demand as soon as a simulated solution or the reachable set
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Table 17: Guard intersection methods in CORA.

method description reference

polytope The reachable sets are converted to polytopes and then inter-
sected with the guard sets. Afterwards, the vertices of the
sets representing the intersections are calculated. Finally,
the vertices are enclosed by oriented hyperrectangles, where
the orientation is determined by the methods in Tab. 16.

[60]

zonoGirard First, suitable template directions are determined using the
methods in Tab. 16. Then, the algorithm described in [61] is
applied to compute an upper and a lower bound for the pro-
jection of the intersection between reachable set and guard
set onto each template direction.

[61]

conZonotope Guard intersection computation based on constrained zono-
topes (see Sec. 2.2.1.9). Constrained zonotopes are closed
under intersection. To this end, we first convert the reach-
able sets to constrained zonotopes and then intersect the
reachable set with the guard sets. Finally, the union of all
intersections is enclosed by oriented hyperrectangles, where
the orientation is determined with the methods in Tab. 16.

hyperplaneMap The continuous dynamics are abstracted by constant flow,
which allows to calculate the intersection with a hyperplane
using a closed formula (guard mapping).

[62]

pancake The dynamics of the system is scaled by the distance to the
guard set so that the reachable set is very flat shortly before
passing the guard set. It is then often possible to pass the
guard set in a single time step.

[63]

nondetGuard Guard intersection approach that works very well for non-
deterministic guard sets. We first enclose all reachable sets
that intersect the guard set with oriented hyperrectangles,
where the orientation is determined using the methods in
Tab. 16. Afterwards, we compute the intersection of the
oriented hyperrectangles with the guard set.

levelSet The intersections between the reachable set and nonlin-
ear guard sets are enclosed by polynomial zonotopes (see
Sec. 2.2.1.5)

[64]

Table 18: Supported combinations of guard sets and guard intersection methods. The short-
hand polytope denotes all polytopic set representations, which are interval, zonotope,
mptPolytope, conZonotope, and zonoBundle.

options.guardIntersect polytope conHyperplane levelSet

polytope
√ √ ×

zonoGirard × √ ×
conZonotope

√ √ ×
hyperplaneMap × √ ×
pancake × √ ×
nondetGuard

√ √ ×
levelSet × × √
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Figure 14: Enclosing hyperrectangles for different methods to obtain the orientation (left) and
intersection between the hyperrectangles for all methods (right).

enters the corresponding part of the state space. Since usually only a small part of the state
space is explored by simulation or reachability analysis, it is possible to significantly reduce the
computational costs of the analysis if the system is modeled as a parallel hybrid automaton [66].

Parallel hybrid automata are implemented in CORA by the class parallelHybridAutomaton.
An object of class parallelHybridAutomaton can be constructed as follows:

obj = parallelHybridAutomaton(components, inputBinds),

with input arguments

• components – cell array containing all subcomponents of the system. Each subcomponent
has to be represented as a hybridAutomaton object (see Sec. 4.3.1). Currently, only hybrid
automata for which the continuous dynamics are modeled as a linear system (see Sec. 4.2.1)
are supported.

• inputBinds – cell array containing matrices that describe the connections between the
subcomponents. Each matrix has two columns: the first column represents the component
the signal comes from and the second column the output number, e.g., [2, 3] refers to output
3 of component 2. When an input to a component is also an input to the composed system,
we use index 0, e.g., [0, 1]. For each input of the subcomponent, we specify a new row and
the row number corresponds to the input index of the considered component.

For better illustration of the required information, we introduce the example presented in Fig. 15
consisting of three components. For the parallel hybrid automaton in this example, the input
binds have to be specified as follows:

inputBinds{1} = [[0 2];[0 1];[2 1]]; % input connections for component 1

inputBinds{2} = [[0 1];[0 2]]; % input connections for component 2

inputBinds{3} = [[1 2];[2 2]]; % input connections for component 3

Let us briefly discuss the solution for component 1, which has three inputs and thus inputBinds{1}
has three rows: The first input (first row) is the second input of the composed system; the sec-
ond input is the first input of the composed system; and the third input is the first output of
component 2.

Since the modeling of hybrid automata is tedious and error-prone, we provide a method to
read models of parallel hybrid automata using the SpaceEx format [46]. For modeling and
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modifying SpaceEx models, one can use the freely-available SpaceEx model editor downloadable
from spaceex.imag.fr/download-6. Details on converting SpaceEx models to models as defined
in this section can be found in Sec. 7.

Component 1

(3 states)

Component 2

(5 states)

Component 3

(2 states)

Figure 15: Example of a parallel hybrid automaton that consists of three subcomponents.

4.3.2.1 Operation reach

The settings for reachability analysis are specified as fields of the struct options (see Sec. 4.1.1).
For parallel hybrid automata, the settings are identical to the ones for hybrid automata (see
Sec. 4.3.1.1).

The initial location params.startLoc and the final location params.finalLoc (see Sec. 4.1.1)
are specified as a vector l ∈ Ns

≥0, where each entry of the vector represents the index of the
location for one of the s subcomponents.

For the set of uncertain inputs specified by params.U (see Sec. 4.1.1), there exist two different
cases for parallel hybrid automata:

1. The input set is identical for each component and location. In this case, a single set
U ⊂ Rm represented as a zonotope (see Sec. 2.2.1.1) is provided.

2. The input set is different for each component and location. In this case, params.U can
be specified as a cell array, where each entry represents the input set for one component.
Since each component can have multiple locations, the input set for each component is
again a cell array whose entries represent the input sets for all locations. The input set for
the overall system is then constructed on demand for each visited location according to

U = params.U{i(1)}{l(i(1))} × · · · × params.U{i(m)}{l(i(m))},

where the vector l ∈ Ns
≥0 stores the index of the current location for all s components, and

the vector i ∈ Nm
≥0 maps the input sets for the single components to the global input set.

The vector i can be specified with an additional setting params.inputCompMap = i.
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5 Abstraction to Discrete Systems

5.1 State Space Partitioning

It is sometimes useful to partition the state space into cells, for instance, when abstracting
a continuous stochastic system by a discrete stochastic system. CORA supports axis-aligned
partitioning using the class partition.

We mainly support the following methods for partitions:

• cellCenter – returns a cell array of cell center positions of the partition segments whose
indices are given as input.

• cellIndices – returns cell indices given a set of cell coordinates.

• cellIntervals – returns a cell array of interval objects corresponding to the cells specified
as input.

• cellPolytopes – returns polytopes of selected cells.

• cellSegments – returns cell coordinates given a set of cell indices.

• cellZonotopes – returns zonotopes of selected cells.

• display – displays the parameters of the partition in the MATLAB workspace.

• exactIntersectingCells – finds the exact cells of the partition that intersect a set P,
and the proportion of P that is in each cell.

• intersectingCells – returns the cells possibly intersecting with a continuous set, over-
approximatively, by over-approximating the convex set as a multidimensional interval.

• nrOfCells – returns the number of cells of the partition.

• findSegments – returns segment indices intersecting with a given multidimensional inter-
val.

• nrOfStates – returns the number of discrete states of the partition.

• partition – constructor of the class.

• plot – plots the partition.

5.2 Abstraction to Markov Chains

The main idea of the Markov chain abstraction is to analyze a dynamic system probabilistically
by a Markov chain instead of making use of the original system dynamics. The Markov chain
abstraction has to be performed so that it approximates the behavior of the original system with
appropriate accuracy. The abstraction can be applied to both continuous and hybrid systems.
Since Markov chains are stochastic systems with a discrete state space, the continuous state
space of the original state and input space has to be discretized for the abstraction as presented
in Sec. 5.1. This implies that the number of states of the Markov chain grows exponentially with
the dimension of the continuous state space. Thus, the presented abstraction is only applicable
to low-dimensional systems of typically up to 4 continuous state variables.

The following definition of Markov chains is adapted from [67]: A discrete time Markov chain
MC = (Y, p̂0,Φ) consists of

• The countable set of locations Y ⊂ N>0.
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• The initial probability p̂0i = P (z(0) = i), with random state z : Ω → Y , where Ω is the set
of elementary events and P () is an operator determining the probability of an event.

• The transition matrix Φij = P (z(k + 1) = i|z(k) = j) so that p̂(k + 1) = Φp̂(k).

Clearly, the Markov chain fulfills the Markov property, i.e., the probability distribution of the
future time step p̂(k + 1) depends only on the probability distribution of the current time step
p̂(k). If a process does not fulfill this property, one can always augment the discrete state space
by states of previous time steps, allowing the construction of a Markov chain with the new
state z∗(k)T =

[
z(k)T , z(k − 1)T , z(k − 2)T , . . .

]
. An example of a Markov chain is visualized in

Fig. 16 by a graph whose nodes represent the states 1, 2, 3 and whose labeled arrows represent
the transition probabilities Φij from state j to i.

1
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0 0.1 0
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Figure 16: Exemplary Markov chain with 3 states.

The relation of the discrete time step k and the continuous time is established by introducing
the time increment τ ∈ R+ after which the Markov chain is updated according to the transition
matrix Φ. Thus, the continuous time at time step k is tk = k · τ . The generation of a Markov
chain from continuous dynamics is performed as described in [25, Sec. 4.3].

We mainly support the following methods for Markov chains:

• build – builds the transition matrices of the Markov chains using simulation.

• build reach – builds the transition matrices of the Markov chains using reachability
analysis.

• convertTransitionMatrix – converts the transition matrix of a Markov chain so that it
can be used for an optimized update as presented in [68].

• markovchain – constructor of the class.

• plot – generates 3 plots of a Markov chain: 1. sample trajectories; 2. reachable cells for
the final time; 3. reachable cells for the time interval.

• plot reach – generates 3 plots of a Markov chain: 1. continuous reachable set together
with sample trajectories; 2. reachable cells for the final time; 3. reachable cells for the
time interval.

• plotP – plots the 2D probability distribution of a Markov chain.
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5.3 Stochastic Prediction of Road Vehicles

An important application of abstracting hybrid dynamics to Markov chains is the probabilistic
prediction of traffic participants as presented in, e.g., [68, 69]. The probabilistic information
allows one not only to check if a planned path of an autonomous vehicle may result in a crash,
but also with which probability. Consequently, possible driving strategies of autonomous cars
can be evaluated according to their safety. Traffic participants are abstracted by Markov chains
as presented in Sec. 5.2. There are three properties which are in favor of the Markov chain
approach: The approach can handle the hybrid dynamics of traffic participants, the number of
continuous state variables (position and velocity) is low, and Markov chains are computationally
inexpensive when they are not too large.

We provide all numerical examples presented in [25, Sec. 5]. Please note that the code is not
as clean as for the core CORA classes since this part of the code is not a foundation for other
implementations, but rather a demonstration of probabilistic predictions of road traffic. To
replicate the braking scenario in [25, Sec. 5], perform the following steps:

1. Run /discrDynamics/ProbOccupancyPrediction/intersection/

start intersectionDatabase to obtain an intersection database. The result is a struc-
ture fArray. Caution: Executing this function can take several hours.

2. Run start carReach to compute the Markov chain of a traffic participant. You have to
select the corresponding fArray file to make sure that the segment length of the path is
consistent. The type of traffic participant is exchanged by exchanging the loaded hybrid
automaton model, e.g., to load the bicycle model use [HA,...] = initBicycle(fArray.

segmentLength). Finally, save the resulting probabilistic model. Caution: Executing this
function can take several hours.

3. (optional) Instead of computing the Markov chain by simulations, one can compute it
using reachability analysis by using carReach reach.

4. Select the scenario; each scenario requires to load a certain amount of MC models. The
following set of scenarios are currently available:

• braking

• intersectionCrossing

• knownBehavior

• laneChange

• merging

• overtaking

• straightVScurved

As an example, the outcome of the braking scenario is described subsequently. The interaction
between vehicles in a lane is demonstrated for 3 cars driving one after the other. The cars are
denoted by the capital letters A, B, and C, where A is the first and C the last vehicle in driving
direction. Vehicle A is not computed based on a Markov chain, but predicted with a constant
velocity of 3 m/s so that the faster vehicles B and C are forced to brake. The probability
distributions for a selected time interval is plotted in Fig. 17. For visualization reasons, the
position distributions are plotted in separate plots, although the vehicles drive in the same lane.
Darker regions indicate high probability, while brighter regions represent areas of low probability.
In order to improve the visualization, the colors are separately normalized for each vehicle.
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Figure 17: Probabilistic occupancy prediction of the braking scenario.
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6 Additional Functionality

In this section we describe additional functionality implemented in CORA.

6.1 Class reachSet

Reachable sets are stored as objects of class reachSet. This class implements several useful
methods that make it very convenient to handle the resulting reachable sets.

An object of class reachSet can be constructed as follows:

R = reachSet(timePoint)

R = reachSet(timePoint, parent)

R = reachSet(timePoint, parent, loc)

R = reachSet(timePoint, timeInt)

R = reachSet(timePoint, timeInt, parent)

R = reachSet(timePoint, timeInt, parent, loc)

with input arguments

• timePoint struct with fields .set and .time storing reachable sets of time points.

• timeInt struct with fields .set, .time, and .algebraic (nonlinDASys only, see
Sec. 4.2.8) storing reachable sets of time intervals.

• parent index of the parent reachable set.

• loc index of the location (see Sec. 4.3) to which the reachable set belongs
(hybrid systems only).

The reachable set can consist of multiple strands as visualized in Fig. 18. New strands are
created at location changes for hybrid systems, if reachable sets are split, and if reachable sets
are united. For the reachable set shown in Fig. 18, the corresponding reachSet object is as
follows:

R =

5x1 reachSet array:

timePoint

timeInterval

parent

loc

R(1)

reachSet with properties:

timePoint: [1x1 struct]

timeInterval: [1x1 struct]

parent: 0

loc: 1

R(2)

reachSet with properties:

timePoint: [1x1 struct]

timeInterval: [1x1 struct]

parent: 1

loc: 2

R(3)

reachSet with properties:

timePoint: [1x1 struct]

timeInterval: [1x1 struct]

parent: 2

loc: 2

R(4)

reachSet with properties:

timePoint: [1x1 struct]

timeInterval: [1x1 struct]

parent: 2

loc: 2

R(5)

reachSet with properties:

timePoint: [1x1 struct]

timeInterval: [1x1 struct]

parent: [3,4]

loc: 2

Next, we explain the most common methods for the class reachSet in detail.

6.1.1 add

The method add adds a reachable set to another one:

R = add(R1, R2)

R = add(R1, R2, parent),
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Figure 18: Example demonstrating the different strands of the reachable set.

where R1 and R2 are both objects of class reachSet, and parent is the index of the parent for
the root element of R2. Adding reachable sets is for example useful if the overall reachable set
is computed in multiple sequences.

6.1.2 find

The method find returns all reachable sets that satisfy the specified condition:

res = find(R, prop, val),

where R is an object of class reachSet, prop is a string specifying the property for the condition,
val is the desired value of the property, and res is an object of class reachSet containing all
reachable sets that satisfy the property. Currently, the following values for prop are supported:

• ’location’: find all reachable sets that correspond to the specified location.

• ’parent’: find all reachable sets with the specified parent.

• ’time’: find all reachable sets that correspond to the specified time interval.

6.1.3 plot

The method plot visualizes a two-dimensional projection of the boundary of reachable set for
time intervals:

han = plot(R)

han = plot(R, dim)

han = plot(R, dim, linespec)

han = plot(R, dims, linespec, namevaluepairs),

where R is an object of class reachSet, han is a handle to the plotted MATLAB graphics object,
and the additional input arguments are defined as

• dims: Integer vector dims ∈ N2
≤n specifying the dimensions for which the projection is

visualized (default value: dims = [1 2]).

• linespec: (optional) line specifications, e.g., ’--*r’, as supported by MATLAB21.

• namevaluepairs: (optional) further specifications as name-value pairs, e.g., ’LineWidth’,2
and ’FaceColor’,[.5 .5 .5], as supported by MATLAB. If the plot is not filled, these

21https://de.mathworks.com/help/matlab/ref/linespec.html
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are the built-in Line Properties22, if the plot is filled, they correspond to the Patch Prop-
erties23.

The following name-value pairs enhance the built-in functionalities:

• ’Order’: zonotope order for plotting. If provided, the zonotope order is reduced to the
given order before the set is plotted.

• ’Splits’: number of splits applied to refine the plotted over-approximation of polynomial
zonotopes (polynomial zonotopes only, see Sec. 2.2.1.5).

• ’Unify’: If the name-value pair ’Unify’,true is passed the union of all reachable sets
is computed to avoid overlapping regions in the plot. The resulting figure then usually
requires significantly less storage space.

For discrete-time systems (see Sec. 4.2.3 and Sec. 4.2.7), the reachable set at time points is
visualized since there exists no reachable set for time intervals.

6.1.4 plotOverTime

The method plotOverTime visualizes a one-dimensional projection of the reachable set of time
intervals over time:

han = plotOverTime(R)

han = plotOverTime(R, dims)

han = plotOverTime(R, dims, linespec),

han = plotOverTime(R, dims, linespec, namevaluepairs),

where R is an object of class reachSet, han is a handle to the plotted MATLAB graphics object,
and the additional input arguments are defined as

• dims: Integer vector dims ∈ N≤n specifying the dimensions for which the projection is
visualized (default value: dim = 1).

• linespec: (optional) line specifications, e.g., ’--*r’, as supported by MATLAB24.

• namevaluepairs: (optional) further specifications as name-value pairs, e.g., ’LineWidth’,2
and ’FaceColor’,[.5 .5 .5], as supported by MATLAB. They correspond to the Patch
Properties25.

The following name-value pairs enhance the built-in functionalities:

• ’Unify’: If the name-value pair ’Unify’,true is passed the union of all reachable sets
is computed to avoid overlapping regions in the plot. The resulting figure then usually
requires significantly less storage space.

For discrete-time systems (see Sec. 4.2.3 and Sec. 4.2.7), the reachable set at time points is
visualized since there exists no reachable set for time intervals.

6.1.5 query

The method query returns the value of a certain property of an object of class reachSet:

val = query(R, prop),

22https://de.mathworks.com/help/matlab/ref/matlab.graphics.chart.primitive.line-properties.html
23https://de.mathworks.com/help/matlab/ref/matlab.graphics.primitive.patch-properties.html
24https://de.mathworks.com/help/matlab/ref/linespec.html
25https://de.mathworks.com/help/matlab/ref/matlab.graphics.primitive.patch-properties.html
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where R is an object of class reachSet, prop is a string specifying the property of interest, and
val is the value of the property. Currently, the following values for prop are supported:

• ’reachSet’: returns all reachable sets of time intervals as a cell array.

• ’reachSetTimePoint’: returns all reachable sets at points in time as a cell array.

• ’finalSet’: returns the last time-point reachable set.

• ’tVec’: returns the vector of time step sizes (only supported for one single strand).

6.2 Class simResult

The results of simulations are stored in CORA as objects of the class simResult, which provides
several methods to easily visualize the simulated trajectories. An object of class simResult can
be constructed as follows:

simRes = simResult(x, t)

simRes = simResult(x, t, loc)

with input arguments

• x cell array storing the states of the simulated trajectories.

• t cell array storing the time points for the simulated trajectories.

• loc cell array storing the indices of the locations for the simulated trajectories
(hybrid systems only).

Next, we explain the methods of the class simResult in detail.

6.2.1 add

The method add combines two simResult objects simRes1 and simRes2:

simRes = add(simRes1, simRes2).

6.2.2 plot

The method plot visualizes a two-dimensional projection of the obtained trajectories:

han = plot(simRes)

han = plot(simRes, dims)

han = plot(simRes, dims, linespec)

han = plot(simRes, dims, namevaluepairs)

where simRes is an object of class simResult, han is a handle to the plotted MATLAB graphics
object, and the additional input arguments are defined as

• dims: Integer vector dims ∈ N2
≤n specifying the dimensions for which the projection is

visualized (default value: dims = [1 2]).

• linespec: (optional) line specifications, e.g., ’--*r’, as supported by MATLAB26 (default
value: linespec = ’b’).

• namevaluepairs: (optional) further specifications as name-value pairs, e.g., ’LineWidth’,2
and ’MarkerSize’,1.5, as supported by MATLAB. They correspond to the Line Prop-
erties27.

26https://de.mathworks.com/help/matlab/ref/linespec.html
27https://de.mathworks.com/help/matlab/ref/matlab.graphics.chart.primitive.line-properties.html
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6.2.3 plotOverTime

The method plotOverTime visualizes a one-dimensional projection of the simulated trajectories
over time:

han = plotOverTime(simRes)

han = plotOverTime(simRes, dims)

han = plotOverTime(simRes, dims, linespec)

han = plotOverTime(simRes, dims, namevaluepairs)

where simRes is an object of class simResult, han is a handle to the plotted MATLAB graphics
object, and the additional input arguments are defined as

• dims: Integer vector dims ∈ N≤n specifying the dimensions for which the projection is
visualized (default value: dims = 1).

• linespec: (optional) line specifications, e.g., ’--*r’, as supported by MATLAB28.

• namevaluepairs: (optional) further specifications as name-value pairs, e.g., ’LineWidth’,2
and ’MarkerSize’,1.5, as supported by MATLAB. They correspond to the Line Prop-
erties29.

6.3 Class specification

The class specification allows one to define specifications that a system has to satisfy (see
Sec. 4.1.1). If specifications are provided, reachability analysis terminates as soon as a specifi-
cation is violated. An object of class specification can be constructed as follows (note that
S can be replaced by list):

spec = specification(S)
spec = specification(S, type)
spec = specification(S, location)
spec = specification(S, type, location)
spec = specification(S, type, time)
spec = specification(S, type, location, time)
spec = specification(S, type, time, location)
spec = specification(φ, ’logic’)

spec = specification(func, ’custom’)

spec = specification(func, ’custom’, time),

spec = specification(func, ’custom’, location),

spec = specification(func, ’custom’, time, location),

spec = specification(func, ’custom’, location, time),

where the input arguments are defined as follows:

28https://de.mathworks.com/help/matlab/ref/linespec.html
29https://de.mathworks.com/help/matlab/ref/matlab.graphics.primitive.patch-properties.html

89

https://de.mathworks.com/help/matlab/ref/linespec.html
https://de.mathworks.com/help/matlab/ref/matlab.graphics.primitive.patch-properties.html


6 ADDITIONAL FUNCTIONALITY

• S set which defines the specification represented by one of the set representations
in Sec. 2.2.

• list cell array storing the sets which define the specifications. Useful for construct-
ing multiple specifications at once.

• type string specifying the type of the specifications. Supported types are
’unsafeSet’, ’safeSet’, ’invariant’, and ’custom’.

• location for hybrid automata (see Sec. 4.3.1): double array specifying in which location
of a hybrid automaton the specification is active, can also be set to [] meaning
active in all locations (default); for parallel hybrid automata (see Sec. 4.3.2):
cell-array of double arrays specifying list of active locations for each component
of the hybrid automaton

• time time interval in which the specification is valid specified as an object of class
interval (see Sec. 2.2.1.2). The default value is the empty interval, which
stands for valid at all times.

• φ temporal logic specification represented as an object of class stl (see
Sec. 6.10).

• func function handle to a function f(R) that takes the current reachable set R for
time intervals as an input argument and returns true if the custom specifica-
tion is satisfied, and false otherwise.

Let us denote the reachable set at time t as R(t). The different types of specifications are defined
as follows:

’unsafeSet’ : ∀t ∈ [t0, tf ] : R(t) ∩ S = ∅
’safeSet’ : ∀t ∈ [t0, tf ] : R(t) ⊆ S
’invariant’30 : ∀t ∈ [t0, tf ] : R(t) ∩ S 6= ∅
’logic’ : ∀ξ(t) ∈ R(t) : ξ(t) |= φ

’custom’ : ∀t ∈ [t0, tf ] : f(R(t)) = 1,

where t0 is the initial and tf the final time for the reachable set computation. It is also possible
to combine mutliple specifications using the method add (see Sec. 6.3.1). Let us demonstrate
the construction of a specification by an example:

% first specification

S = ellipsoid(diag([4,4]));

spec1 = specification(S,’safeSet’);

% second specification

S = interval([1;1],[2.5;2.5]);

spec2 = specification(S,’unsafeSet’);

% combination of both specifications

spec = add(spec1,spec2);

Next, we explain the methods of class specification in detail.

30Please note that this specification does not check for invariants as defined in [70], but whether a reachable
set is still within an invariant S as specified for hybrid systems.
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Table 19: Fields of the struct options.polyZono defining the settings for restructuring polyno-
mial zonotopes (see [31, Sec. 2.5]).

setting description

– .maxPolyZonoRatio upper bound µd for the volume ratio between the independent
and dependent part of a polynomial zonotope (see [31, Line 18
in Alg. 1]). If the bound is exceeded, the polynomial zonotope is
restructured. The default value is ∞ (no restructuring).

– .maxDepGenOrder upper bound for the value p
n after restructuring, where p

is the number of dependent polynomial zonotope factors (see
Sec. 2.2.1.5) and n is the system dimension. The default value
is 20.

– .restructureTechnique string specifying the method that is applied to restruc-
ture polynomial zonotopes. The string is composed of two
parts restructureTechnique= method + reductionTechnique,
where method represents the restructure strategy (see Tab. 20) and
reductionTechnique represents the zonotope reduction technique
(see Tab. 4). Note that the two parts are combined by camelCase.
The default value is ’reduceGirard’.

6.3.1 add

The method add unites two specifications:

spec = add(spec1, spec2),

where spec1 and spec2 are both objects of class specification. The specifications defined by
spec1 and spec2 both have to be satisfied for the resulting specification spec to be satisfied.

6.3.2 check

The method check checks if a set S ⊂ Rn satisfies the specification defined by the object spec
of class specification:

res = check(spec,S),
where res is true if the specification is satisfied, and false otherwise.

6.4 Restructuring Polynomial Zonotopes

In this subsection, we describe the settings for triggering and implementing the restructure

operation of polynomial zonotopes (see Sec. 2.2.1.5). As described in Sec. 4.2.5.1, it is advan-
tageous to use a non-convex set representation such as polynomial zonotopes to represent the
reachable sets of nonlinear systems. Since during reachability analysis the size of the independent
part of the polynomial zonotope constantly grows, the accuracy can be significantly improved
by shifting generators from the independent to the dependent part as done by the restructure
operation described in [31, Sec. 2.5]. For this restructuring process, there exist some additional
settings listed in Tab. 19.

6.5 Evaluating the Lagrange Remainder

One critical step in reachability analysis for nonlinear systems is the evaluation of the Lagrange
remainder L (see (31) in Sec. 4.2.5.1) using range bounding (see Sec. 2.2.3). The evaluation of
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Table 20: Strategies for restructuring polynomial zonotopes

strategy description

reduce reduction of independent generators
reduceFull reduction of independent generators to zonotope order 1
zonotope enclosure of polynomial zonotope with a zonotope

the Lagrange remainder is often the most time-consuming part of reachability analysis and if the
computed bounds are not tight, the reachable set might “explode”. Therefore, CORA provides
several different options for evaluating the Lagrange remainder, which can be specified as fields
of the struct options.lagrangeRem (see Tab, 21).

6.6 Verified Global Optimization

For general nonlinear functions f(x) it is often impossible to compute the global minimum
or maximum. However, if the values for the variable x are restricted to a certain domain,
the approach from [71] can be applied to compute the minimum or maximum on the domain
with a certain precision. In CORA, the approach from [71] is implemented in the method
globVerMinimization: Given a nonlinear function f : Rn → R and an interval domain D ⊂ Rn,
the method globVerMinimization computes the global minimum of f(x) on D with precision ǫ:

[f̂ opt, x̂opt,Dopt] = globVerMinimization(f,D, ǫ)

with f̂ opt ∈ f opt ⊕ [−ǫ, ǫ], f opt = min
x∈D

f(x)

xopt ∈ Dopt, xopt = argmin
x∈D

f(x),

where x̂opt ∈ Dopt is the most likely position of the global minimum, the function f(x) is provided
as a MATLAB function handle, and the domain D is represented as an object of class interval
(see Sec. 2.2.1.2).

Note that for computing the global maximum, one can just minimize the negated function −f(x).
To compute both, the minimum and the maximum, one can use the method globVerBounds.

To demonstrate verified global optimization in CORA, we consider the example of the Beale
function (see [71, Sec. 6]), which has the global minimum f opt = 0 at the point xopt = [3, 0.5]T :

% function f

f = @(x) (1.5 - x(1)*(1-x(2))).ˆ2 + ...

(2.25 - x(1)*(1-x(2)ˆ2))ˆ2 + ...

(2.625 - x(1)*(1-x(2)ˆ3))ˆ2;

% domain D

D = interval([-4.5;-4.5],[4.5;4.5]);

% verified global optimization

[val,xOpt,domOpt] = globVerMinimization(f,D,1e-5);

Command Window:

val =

-2.7163e-06

domOpt =

[3.00037,3.00092]

[0.49966,0.50011]

31https://de.mathworks.com/help/symbolic/simplify-symbolic-expressions.html
32https://de.mathworks.com/help/symbolic/collect.html
33see setting ’Optimize’ in https://de.mathworks.com/help/symbolic/matlabfunction.html
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Table 21: Fields of the struct options.lagrangeRem defining the settings for evaluating the
Lagrange remainder during reachability analysis for nonlinear systems.

setting description

– .simplify string specifying the method to simplify the symbolic equations
in the Lagrange remainder. The available methods are ’none’

(no simplification), ’simplify’ (simplification using MATLABs
simplify function31), ’collect’ (simplification using MATLABs
collect function32), and ’optimize’ (simplifications using MAT-
LABs code optimization for symbolic expressions33). The default
value is ’none’.

– .tensorParallel flag with value 0 or 1 specifying whether parallel computing is
used to evaluate the Lagrange remainder. The default value is 0
(no parallel computing).

– .replacements function handle to a function r(x, u) (nonlinear systems) or
r(x, u, p) (nonlinear parametric systems) that describes expres-
sions that are replaced and precomputed in the Lagrange remain-
der equations in order to speed up the evaluation (optional).

– .method range bounding method used for evaluating the Lagrange remain-
der. The available methods are ’interval’ (interval arithmetic,
see Sec. 2.2.1.2), ’taylorModel’ (see Sec. 2.2.3.1), or ’zoo’ (see
Sec. 2.2.3.3). The default value is ’interval’.

– .zooMethods cell array specifying the range bounding methods for
class zoo (see Sec. 2.2.3.3). The available meth-
ods are ’interval’, ’affine(int)’, ’affine(bnb)’,
’affine(bnbAdv)’, affine(linQuad)’, ’taylm(int)’,
’taylm(bnb)’, ’taylm(bnbAdv)’, and ’taylm(linQuad)’.

– .maxOrder maximum polynomial order for Taylor models (see Sec. 2.2.3.1).

– .optMethod method used to calculate bounds of Taylor models (see
Sec. 2.2.3.1). The available methods are ’int’, ’bnb’, ’bnbAdv’,
and ’linQuad’. The default value is ’int’.

– .tolerance minimum absolute value for Taylor model coefficients (see
Sec. 2.2.3.1).

– .eps termination tolerance for bounding algorithm for Taylor models
(see Sec. 2.2.3.1).
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6.7 Kaucher Arithmetic

As described in Sec. 2.2.3, interval arithmetic [37] can be applied to compute an over-approximation
for the range of values of a nonlinear function. In this section we consider Kaucher arith-
metic [72], which returns intervals that are interpretable as inner-approximation of the range of
values for nonlinear functions that can be rewritten or abstracted so that each variable appears
at most once. Kaucher arithmetic is based on generalized intervals defined as

K = [x, x], x, x ∈ Rn. (41)

In contrast to intervals as introduced in Sec. 2.2.1.2, generalized intervals omit the constraint
∀i = {1, . . . , n} : xi ≤ xi. In CORA, generalized intervals are implemented by the class
intKaucher. An object of class intKaucher can be constructed as follows:

K = intKaucher(x, x),

where x, x are defined as in (41). We demonstrate Kaucher arithmetic using the example in [56,
Example 1], which considers the nonlinear function f(x) = x2 − x and the domain x ∈ [2, 3].
Since the variable x occurs twice in the function f(x), Kaucher arithmetic cannot be applied
directly. Therefore, we first compute an enclosure of the function f(x) using the mean value
theorem:

fabstract(x) = f(2.5) +
∂f(x)

∂x

∣∣∣∣
x∈[2,3]

(x− 2.5) = 3.75 + [3, 5](x − 2.5).

Since the variable x occurs only once in the resulting function fabstract(x), we can now apply
Kaucher arithmetic to compute an inner-approximation of the range of values for the function
f(x) on the domain x ∈ [2, 3], which yields {f(x) | x ∈ [2, 3]} ⊇ [2.25, 5.25]. In CORA, this
example can be implemented as follows:

% function f

f = @(x) xˆ2 - x;

% compute gradient

syms x;

df = gradient(f,x);

df = matlabFunction(df);

% compute bounds for gradient

I = interval(2,3);

c = center(I);

gr = df(I);

% compute inner-approximation of the range

x = intKaucher(3,2);

gr = intKaucher(infimum(gr),supremum(gr));

res = f(c) + gr*(x - c);

Command Window:

res =

[5.25000,2.25000]

6.8 Contractors

Contractor programming [37, Chapter 4] can be used to contract an interval domain of possible
values with respect to one or multiple nonlinear constraints, which is useful for many appli-
cations. In CORA, contractor programming is implemented by the method contract: Given
a constraint f(x) = 0 defined by a nonlinear function f : Rn → Rm and an interval domain

94



6 ADDITIONAL FUNCTIONALITY

Table 22: Contractors implemented in CORA.

contractor description reference

forwardBackward forward-backward traversion of the syntax tree [37, Chapter 4.2.4]
linearize parallel linearization of constraints [37, Chapter 4.3.4]
polyBox extremal functions of polynomial constraints [73]

D ⊂ Rn, the method contract returns a contracted interval

D̂ = contract(f,D, method)

D̂ = contract(f,D, method, iter)

D̂ = contract(f,D, method, splits)

that satisfies {
x ∈ Rn | f(x) = 0, x ∈ D

}
⊆ D̂,

where the function f(x) is specified as a MATLAB function handle andD, D̂ are both represented
as object of class interval (see Sec. 2.2.1.2). The additional input arguments are as follows:

• method string specifying the contractor that is used. The available contractors are
listed in Tab. 22. If set to ’all’, all available contractors are applied one
after another.

• iter number of consequtive contractions. The default value is 1, so that the con-
tractor is applied only once.

• splits number of iterative splits applied to the domain D in order to refine the result
of the contraction. The default value is 0, so that no splitting is applied.

Let us demonstrate contractor programming in CORA by an example:

% function f(x)

f = @(x) x(1)ˆ2 + x(2)ˆ2 - 4;

% domain D

dom = interval([1;1],[2.5;2.5]);

% contraction

res = contract(f,dom,’forwardBackward’);

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

6.9 Neural Networks

Neural networks are in CORA represented as objects of the class neuralNetwork. Currently,
CORA supports feed-forward neural networks (see Fig. 19) with various activation functions.

An object of class neuralNetwork can be constructed as follows:

nn = neuralNetwork(layers)

where layers is a cell array filled with subclasses of the abstract layer nnLayer. Currently, the
following layers are supported in CORA:
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Figure 19: Feed-forward neural network with N = 2 layers.

• nnLinearLayer(W, b) linear layer calculating y = Wx + b with weight matrix W ∈
RMi×Mi−1 , input x ∈ RMi−1 , bias b ∈ RMi , and output y ∈ RMi .
Mi is the number of neurons in the i-th layer (see Fig. 19).

• nnActivationLayer() abstract activation layer calculating y = σ(x), with x, y ∈ RMi

being the input and output of the current layer. σ is the corre-
sponding activation function.

• nnReLULayer() nnActivationLayer() with σ(x) = max(0, x).

• nnLeakyReLULayer() nnActivationLayer() with σ(x) = max(αx, x), α ∈ R with de-
fault α = 0.01.

• nnSigmoidLayer() nnActivationLayer() with σ(x) = sigmoid(x).

• nnTanhLayer() nnActivationLayer() with σ(x) = tanh(x).

The class neuralNetwork provides the function evaluate that can be used to compute the
image of a neural network for a single point or a set of possible inputs. Let us demonstrate the
neuralNetwork class by the following example which constructs a neural network with the same
structure as the one shown in Fig. 19:

% init weight and bias

W1 = rand(3,2); b1 = rand(2,1);

W2 = rand(2,3); b2 = rand(2,1);

% neural network

nn = neuralNetwork({

nnLinearLayer(W1, b1);

nnReLULayer();

nnLinearLayer(W2, b2);

nnReLULayer();

})

The neural network can be imported into CORA from various common neural network formats.
CORA currently supports ONNX, NNet, YML, Sherlock, and the conversion for neural networks
coming from the Deep Learning Toolbox.

CORA primarily implements the approach described in [1] for the reachability analysis on neural
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networks. Currently, CORA supports zonotopes, polynomial zonotopes, Taylor models, and
constraint zonotopes as input sets to the neural network. For the evaluation using polynomial
zonotopes, a few settings are available. These are stored in the evParams variable:

– .bound approx boolean whether the bounds of the polynomial zonotope should
be estimated by a zonotope enclosure. The default value is false.

– .polynomial approx string describing the order of the approximating polynomial.
Available are ’lin’, ’quad’, and ’cub’.

– .num generators maximal number of generators of the polynomial zonotope. If this
number is exceeded, an order reduction method is executed.

Finally, the following shows an example reachability analysis on neural networks.

% input set

c = [4;4];

G = [2 1 2; 0 2 2];

expMat = [1 0 3;0 1 1];

Grest = [];

pZ = polyZonotope(c,G,Grest,expMat);

% settings

evParams = struct;

evParams.bound_approx = false;

evParams.polynomial_approx = ’lin’;

evParams.num_generators = 1000;

% evaluation

res = nn.evaluate(pZ, evParams);

Further examples of reachability analysis on neural networks can be found at
cora/examples/global/classes/nn/.

6.10 Signal Temporal Logic

Signal temporal logic is a common formalism to represent complex specification that describe
the desired behavior of a system. In CORA, signal temporal logic formulas are represented by
the class stl. An object of class stl can be constructed as follows:

obj = stl(name,n)

where name is a string specifying the name of the variable and n is the dimension of the variable.
The variables constructed with the constructor of the class stl correspond to the system states.
These variables can be used to construct predicates with the operators +, -, *, <, <=, >, and
>=. In addition, set containment x ∈ S can be realized with the function in(x,S), where S
is a continuous set (see Sec. 2.2). The predicates can then be used as inputs for the signal
temporal logic operators in Tab. 24. The resulting signal temporal logic formula can be used
to construct a system specification (see Sec. 6.3) which is checked during reachability analysis,
where CORA implements the approach in [74] to check if the reachable set satisfies temporal
logic specifications.

Let us demonstrate signal temporal logic in CORA by an example:
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Table 24: Operators for signal temporal logic, where ξ(t) is a trace and |= denotes entailment.

operator CORA definition

φ1 ∧ φ2 p1 & p2 ξ(t) |= φ1 ∧ ξ(t) |= φ2

φ1 ∨ φ2 p1 | p2 ξ(t) |= φ1 ∨ ξ(t) |= φ2

¬φ ∼p ξ(t) |= ¬φ
φ1 ⇒ φ2 implies(p1,p2) ξ(t) |= φ1 ⇒ ξ(t) |= φ2

Xa φ next(p,a) ξ(t+ a) |= φ
F[a,b] φ finally(p,interval(a,b)) ∃t ∈ [a, b] : ξ(t) |= φ

G[a,b] φ globally(p,interval(a,b)) ∀t ∈ [a, b] : ξ(t) |= φ

φ1 U[a,b] φ2 until(p1,p2,interval(a,b)) ∃t ∈ [a, b] : ξ(t) |= φ2 ∧ ∀t′ ∈ [0, t) : ξ(t′) |= φ1

φ1 R[a,b] φ2 release(p1,p2,interval(a,b)) ∀t ∈ [a, b] : ξ(t) |= φ2 ∨ ∃t′ ∈ [0, t) : ξ(t′) |= φ1

% create variable

x = stl(’x’,2);

% signal temporal logic formula

eq = until(x(1) < 3,x(2) > 5,interval(1,3))

Command Window:

eq =

(x1 < 3 U[1,3] x2 > 5)

6.11 Conversion of CommonRoad Models

CommonRoad34 is a collection of composable benchmarks for motion planning on roads. The
syntax for loading a CommonRoad file with the function commonroad2cora is as follows:

[statObs, dynObs, x0, goalSet, lanelets] = commonroad2cora(filename),

where filename is a string with the file name of the CommonRoad file that should be loaded,
and the output arguments are defined as:

• statObs MATLAB cell-array storing the static obstacles for the planning problem as
objects of class polygon (wrapper class for MATLAB class polyshape).

• dynObs MATLAB cell-array storing the dynamic obstacles for the planning problem
as objects of class polygon (wrapper class for MATLAB class polyshape). In
addition, the corresponding time interval for each obstacle is stored.

• x0 struct with fields .x, .y, .time, .velocity and .orientation storing the
initial state for the planning problem.

• goalSet struct with fields .set, .time, .velocity and .orientation storing the goal
set for the planning problem.

• lanelets MATLAB cell-array storing the lanelets for the traffic scenario as objects of
class polygon (wrapper class for MATLAB class polyshape).

34commonroad.in.tum.de
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7 Loading Simulink and SpaceEx Models

Since CORA 2018 it is possible load SpaceEx models. This not only has the advantage that one
can use the SpaceEx model editor to create models for CORA (see Sec. 7.1.2), but also makes it
possible to indirectly load Simulink models through the SL2SX converter [75,76] (see Sec. 7.1.1).
Since CORA 2020 it is furthermore possible to export CORA models as SpaceEx models (see
Sec. 4.1.6), which closes the loop between the two formats. We also plan to make the conversion
to CORA available within HYST in the future [77]. We first present how to create SpaceEx
models and then how one can convert them to CORA models.

7.1 Creating SpaceEx Models

We present two techniques to create SpaceEx models: a) converting Simulink models to SpaceEx
models and b) creating models using the SpaceEx model editor.

7.1.1 Converting Simulink Models to SpaceEx Models

The SL2SX converter generates SpaceEx models from Simulink models and can be downloaded
from github.com/nikos-kekatos/SL2SX.

After downloading the SL2SX converter or cloning it using the command

git clone https://github.com/nikos-kekatos/SL2SX.git,

one can run the tool using the Java Runtime Environment, which is pre-installed on most
systems. You can check whether it is pre-installed by typing java -version in your terminal.
To run the tool, type java -jar SL2SX.jar. One can also run the converter directly in the
MATLAB command window by typing

system(sprintf(’java -jar path to converter/SL2SX terminal.jar %s’, ...

’path to model/model name.xml’))

after adding the files of the converter to the MATLAB path, where the placeholders
path to converter and path to model represent the corresponding file paths.

To use the converter, you have to save your Simulink model in XML format by typing in the
MATLAB command window:

load_system(’model_name’)

save_system(’model_name.slx’,’model_name.xml’,’ExportToXML’,true)

When the model is saved as *.mdl instead of *.slx, please replace ’model name.slx’ by
’model name.mdl’ above. A screenshot of an example to save a model in XML format together
with the corresponding Simulink model of a DC motor is shown in Fig. 20.

Please note that the SL2SX converter cannot convert any Simulink model to SpaceEx. A detailed
description of limitations can be found in [75,76].

7.1.2 SpaceEx Model Editor

To create SpaceEx models in an editor, one can use the SpaceEx model editor downloadable
from spaceex.imag.fr/download-6.

To use the editor, save the file (e.g., spaceexMOE.0.9.4.jar) and open a terminal. To execute
the model editor, type java -jar filename.jar and in the case of the example file, type java
-jar spaceexMOE.0.9.4.jar. If it does not work, you might want to check if you have java
installed: type java -version in your terminal.
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Figure 20: Screenshot of MATLAB/Simulink showing how to save Simulink models in XML
format.

A screenshot of the model editor can be found in Fig. 21. Further information on the SpaceEx
modeling language can be found in [46] and further documents can be downloaded from:
spaceex.imag.fr/documentation/user-documentation.

Examples of SpaceEx models can be loaded in CORA from /models/SpaceEx.

7.2 Converting SpaceEx Models

To load SpaceEx models (stored as XML files) into CORA, one only has to execute a simple
command:

spaceex2cora(’model.xml’);

This command creates a CORA model in /models/SpaceExConverted under a folder with the
identical name as the SpaceEx model. If the SpaceEx model contains nonlinear differential
equations, additional dynamics files are stored in the same folder. Below, we present as an
example the converted model of the bouncing ball from SpaceEx:
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function HA = bball(˜)

%% Generated on 27-Aug-2022

%---------------Automaton created from Component ’system’------------------

%% Interface Specification:

% This section clarifies the meaning of state, input & output dimensions

% by showing their mapping to SpaceEx variable names.

% Component 1 (system.ball):

% state x := [x; v]

% input u := [uDummy]

%-------------------------Component system.ball----------------------------

%-----------------------------State always---------------------------------

%% equation:

% x’ == v & v’ == -g

dynA = ...

[0,1;0,0];

dynB = ...

[0;0];

dync = ...

[0;-9.81];

dynamics = linearSys(dynA, dynB, dync);

%% equation:

% x >= 0

A = ...

[-1,0];

b = ...

[0];

polyOpt = struct(’A’, A, ’b’, b);

inv = mptPolytope(polyOpt);

trans = {};

%% equation:

% v’ := -c*v

resetA = ...

[1,0;0,-0.75];

resetB = ...

[1,0;0,-0.75];

resetc = ...

[0;0];

reset = struct(’A’, resetA, ’B’, resetB, ’c’, resetc);

%% equation:

% x <= eps & v < 0

c = [-1;0];

d = 0;C = ...

[0,1];

D = [0];

guard = conHyperplane(c,d,C,D);

trans{1} = transition(guard, reset, 1);

loc{1} = location(’S1’, inv, trans, dynamics);

HA = hybridAutomaton(loc);
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end

At the beginning of each automatically-created model, we list the states and inputs so that
the created models can be interpreted more easily using the variable names from the SpaceEx
model. These variable names are later replaced by the state vector x and the input vector u
to make use of matrix multiplications in MATLAB for improved efficiency. Next, the dynamic
equations, guard sets, invariants, transitions, and locations are created (the semantics of these
components is explained in Sec. 4.3).

A hand-written version of the bouncing ball example can be found in Sec. 9.4.1 for comparison.

Figure 21: Screenshot of the SpaceEx model editor showing the bouncing ball example.

Remarks

1. The converter makes heavy use of operations of strings, which have been modified since
MATLAB 2017a. We have developed the converter using MATLAB 2017b. It is thus
recommended to update to the latest MATLAB version to use the converter. It cannot be
used if you have a version older than 2017a.

2. It is not yet possible to convert all possible models that can be modeled in SpaceEx. This
is mostly due to unfinished development of the converter. Some cases, however, are due
to the less strict hybrid automaton definition used by SpaceEx, which allows for models
that currently cannot be represented in CORA. Hybrid models (see Sec. 4.3) that do not
violate the following restrictions can be converted:

• Uncertain parameters: CORA supports models with varying parameters, but our
converter cannot produce such models yet. Parameters must be fixed in the SpaceEx
model or will be treated as time-varying inputs. This may result in nonlinear differ-
ential equations even when the system is linear time-varying.

• Reset Functions: Resets can be linear: x′ = Ax+Bu+c, where x′ is the state after
the reset, A ∈ Rn×n, x ∈ Rn is the state before the reset, and B ∈ Rn×m, d ∈ Rn.
They may also be nonlinear functions x′ = f(x, u). Resets violating this restriction
are ignored and trigger a warning.
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• Local Variables: Our parser can currently not detect local variables that are defined
in bound components but not in the root component (detailed definitions of local
variables, bound components, and root components can be found in [78]). Therefore
all relevant variables are required to be non-local in all components.

• Labels: Synchronization labels (variables of type label) are also supported.

3. SX2CORA does not keep all inputs of the SpaceEx Model, if they have no effect on the
generated model (i.e., inputs/uncertain parameters that were only used in invariants/-
guards/resets).

4. Variable names i j I J are renamed to ii jj II JJ, since the MATLAB Symbolic Toolbox
would interpret them as the imaginary number. Variables such as ii III JJJJ are also
lengthened by a letter to preserve name uniqueness.

Optional arguments

To better control the conversion, one can use additional arguments:

spaceex2cora(’model.xml’,’rootID’,’outputName’,’outputDir’,’cfgFile’);

The optional arguments are:

• ’rootID’ – ID of SpaceEx component to be used as root component (specified as a string).

• ’outputName’ – name of the generated CORA model (specified as a string).

• ’outputDir’ – path to the desired output directory where all generated files are stored
(specified as a string).

• ’cfgFile’ – path to the file containing the SpaceEx configuration (specified as a string).

The implementation of the SX2CORA converter is described in detail in Appendix D.
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8 Graphical User Interface

Since the 2021 release the CORA toolbox includes a graphical user interface (GUI). This GUI
provides access to CORA’s main functionality, even for users without any knowledge about
programming in MATLAB. We recommend the usage of the GUI especially for CORA beginners
since it allows to select algorithm settings conveniently using the respective drop-down menus.
Moreover, the GUI contains info buttons that display detailed descriptions for all algorithm
settings.

Figure 22: Screenshot of the graphical user interface for CORA.

The GUI can be started by running
>> coraApp

form the MATLAB command window. In particular, the GUI can be used to compute reach-
able sets, simulate trajectories, and visualize the corresponding results for linear continuous
systems (see Sec. 4.2.1), nonlinear continuous systems (see Sec. 4.2.5), and hybrid automata
(see Sec. 4.3.1). A screenshot from the GUI is shown in Fig. 22. To specify parameters, such as
the system matrix A for linear systems in Fig. 22, the GUI provides two options: One can either
select variables from the MATLAB workspace using the drop-down menu, or specify parameters
manually in the text field on the right hand side of the drop-down menu. After one has specified
all parameters and settings, the GUI offers two functionalities: By clicking on the run-button
on the bottom left (see Fig. 22), the GUI generates figures that visualize the corresponding
results. On the other hand, by clicking on the save-button the GUI generates a MATLAB script
containing the corresponding CORA code.
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9 Examples

This section presents a variety of examples that have been published in different papers. For
each example, we provide a reference to the paper so that the details of the system can be
studied there. The focus of this manual is on how the examples in the papers can be realized
using CORA—this, of course, is not shown in scientific papers due to space restrictions.

9.1 Set Representations

We first provide examples for set-based computation using the different set representations in
Sec. 2.

9.1.1 Zonotopes

The following MATLAB code demonstrates how to perform set-based computations on zonotopes
(see Sec. 2.2.1.1):

1 Z1 = zonotope([1 1 1; 1 -1 1]); % create zonotope Z1

2 Z2 = zonotope([-1 1 0; 1 0 1]); % create zonotope Z2

3 A = [0.5 1; 1 0.5]; % numerical matrix A

4

5 Z3 = Z1 + Z2; % Minkowski addition

6 Z4 = A*Z3; % linear map

7

8 figure; hold on

9 plot(Z1,[1 2],’b’); % plot Z1 in blue

10 plot(Z2,[1 2],’g’); % plot Z2 in green

11 plot(Z3,[1 2],’r’); % plot Z3 in red

12 plot(Z4,[1 2],’k’); % plot Z4 in black

13

14 P = mptPolytope(Z4) % convert to and display halfspace representation

15 I = interval(Z4) % convert to and display interval

16

17 figure; hold on

18 plot(Z4); % plot Z4

19 plot(I,[1 2],’g’); % plot intervalhull in green

This produces the workspace output

Normalized, minimal representation polytope in R^2

H: [8x2 double]

K: [8x1 double]

normal: 1

minrep: 1

xCheb: [2x1 double]

RCheb: 1.4142

[ 0.70711 0.70711] [ 6.364]

[ 0.70711 -0.70711] [ 2.1213]

[ 0.89443 -0.44721] [ 3.3541]

[ 0.44721 -0.89443] [ 2.0125]

[-0.70711 -0.70711] x <= [ 2.1213]

[-0.70711 0.70711] [0.70711]

[-0.89443 0.44721] [0.67082]

[-0.44721 0.89443] [ 2.0125]
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Intervals:

[-1.5,5.5]

[-2.5,4.5]

The plots generated in lines 9-12 are shown in Fig. 23 and the ones generated in lines 18-19 are
shown in Fig. 24.
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Figure 23: Zonotopes generated in lines 9-
12 of the zonotope example in Sec. 9.1.1.
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Figure 24: Sets generated in lines 18-19 of
the zonotope example in Sec. 9.1.1.

9.1.2 Intervals

The following MATLAB code demonstrates how to perform set-based computations on intervals
(see Sec. 2.2.1.2):

1 I1 = interval([0; -1], [3; 1]); % create interval I1

2 I2 = interval([-1; -1.5], [1; -0.5]); % create interval I2

3 Z1 = zonotope([1 1 1; 1 -1 1]); % create zonotope Z1

4

5 r = rad(I1) % obtain and display radius of I1

6 is_intersecting = isIntersecting(I1, Z1) % Z1 intersecting I1?

7 I3 = I1 & I2; % computes the intersection of I1 and I2

8 c = center(I3) % returns and displays the center of I3

9

10 figure; hold on

11 plot(I1); % plot I1

12 plot(I2); % plot I2

13 plot(Z1,[1 2],’g’); % plot Z1

14 plot(I3,[1 2],’FaceColor’,[.6 .6 .6]); % plot I3

This produces the workspace output

r =

1.5000

1.0000
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is_intersecting =

1

c =

0.5000

-0.7500

The plot generated in lines 11-14 is shown in Fig. 25.
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Figure 25: Sets generated in lines 11-14 of the interval example in Sec. 9.1.2.

9.1.3 Ellipsoids

The following MATLAB code demonstrates how to perform set-based computations on ellipsoids
(see Sec. 2.2.1.3):

1 E1 = ellipsoid(diag([1/2,2])) % create ellipsoid E1 and display it

2 A = diag([2,0.5]);

3

4 E2 = A*E1 + 0.5; % linear Map + Minkowski addition

5 E3 = E1 + E2; % Minkowski addition

6 E4 = E1 & E2; % intersection

7

8 disp([’E1 in E2?: ’,num2str(E2.contains(E1))]);

9 disp([’E1 in E3?: ’,num2str(E3.contains(E1))]);

10

11 figure; hold on

12 plot(E1,[1,2],’b’); % plot E1 in blue

13 plot(E2,[1,2],’g’); % plot E2 in green

14 plot(E3,[1,2],’r’); % plot E3 in red

15 plot(E4,[1,2],’k’); % plot E4 in black

16

17 E5 = ellipsoid([0.8,-0.6; -0.6,0.8],[1; -4]); % create ellipsoid E5

18 Zo_box = zonotope(E5); % overapproximate E5 by a parallelotope

19 Zu_norm = zonotope(E5,10,’outer:norm’); % overapproximate E5 using zonotope norm

20

21 figure; hold on

22 plot(E5); % plot E5
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23 plot(Zo_box,[1,2],’r’); % plot overapproximative zonotope Zo_box

24 plot(Zu_norm,[1,2],’m’);% plot overapproximative zonotope Zu_norm

This produces the workspace output

q:

0

0

Q:

0.5000 0

0 2.0000

dimension:

2

degenerate:

0

E1 in E2?: 0

E1 in E3?: 1

The plots generated in lines 12-15 are shown in Fig. 26 and the ones generated in lines 22-24
are shown in Fig. 27.
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Figure 26: Ellipsoids generated in lines 12-
15 of the ellipsoid example in Sec. 9.1.3.
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Figure 27: Sets generated in lines 22-24 of
the ellipsoid example in Sec. 9.1.3.
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9.1.4 MPT Polytopes

The following MATLAB code demonstrates how to perform set-based computations on polytopes
(see Sec. 2.2.1.4):

1 Z1 = zonotope([1 1 1; 1 -1 1]); % create zonotope Z1

2 Z2 = zonotope([-1 1 0; 1 0 1]); % create zonotope Z2

3

4 P1 = mptPolytope(Z1); % convert zonotope Z1 to halfspace representation

5 P2 = mptPolytope(Z2); % convert zonotope Z2 to halfspace representation

6

7 P3 = P1 + P2 % perform Minkowski addition and display result

8 P4 = P1 & P2; % compute intersection of P1 and P2

9

10 V = vertices(P4) % obtain and display vertices of P4

11

12 figure; hold on

13 plot(P1); % plot P1

14 plot(P2); % plot P2

15 plot(P3,[1 2],’g’); % plot P3

16 plot(P4,[1 2],’FaceColor’,[.6 .6 .6]); % plot P4

This produces the workspace output

Normalized, minimal representation polytope in R^2

H: [8x2 double]

K: [8x1 double]

normal: 1

minrep: 1

xCheb: [2x1 double]

RCheb: 2.8284

[ 0.70711 -0.70711] [1.4142]

[ 0 -1] [ 1]

[-0.70711 -0.70711] [1.4142]

[ -1 0] [ 3]

[-0.70711 0.70711] x <= [4.2426]

[ 0 1] [ 5]

[ 0.70711 0.70711] [4.2426]

[ 1 0] [ 3]

V:

0 -1.0000 0

0 1.0000 2.0000

The plot generated in lines 13-16 is shown in Fig. 28.

109



9 EXAMPLES

−3 −2 −1 0 1 2 3

−1

0

1

2

3

4

5

x1

x
2

Figure 28: Sets generated in lines 13-16 of the MPT polytope example in Sec. 9.1.4.

9.1.5 Polynomial Zonotopes

The following MATLAB code demonstrates how to perform set-based computations on polyno-
mial zonotopes (see Sec. 2.2.1.5):

1 % construct zonotope

2 c = [1;0];

3 G = [1 1;1 0];

4 Z = zonotope(c,G);

5

6 % compute over-approximation of the quadratic map

7 Q{1} = [0.5 0.5; 0 -0.5];

8 Q{2} = [-1 0; 1 1];

9

10 resZono = quadMap(Z,Q);

11

12 % convert zonotope to polynomial zonotope

13 pZ = polyZonotope(Z);

14

15 % compute the exact quadratic map

16 resPolyZono = quadMap(pZ,Q);

17

18 % visualization

19 figure; hold on;

20 plot(resZono,[1,2],’r’);

21 plot(resPolyZono,[1,2],’b’);

The plot generated in lines 19-21 is shown in Fig. 29.

110



9 EXAMPLES

-6 -4 -2 0 2 4 6 8

-6

-5

-4

-3

-2

-1

0

1

2

3

4

x1

x
2

Figure 29: Quadratic map calculated with zonotopes (red) and polynomial zonotopes (blue).

9.1.6 Constrained Polynomial Zonotopes

The following MATLAB code demonstrates how to perform set-based computations on con-
strained polynomial zonotopes (see Sec. 2.2.1.6):

1 % construct zonotope

2 Z = zonotope([0;0],[1 1;0 1]);

3

4 % construct ellipsoid

5 E = ellipsoid([2 1;1 2],[1;1]);

6

7 % convert sets to constrained polynomial zonotopes

8 cPZ1 = conPolyZono(Z);

9 cPZ2 = conPolyZono(E);

10

11 % compute the Minkowski sum

12 resSum = cPZ1 + cPZ2;

13

14 % compute the intersection

15 resAnd = cPZ1 & cPZ2;

16

17 % compute the union

18 resOR = cPZ1 | cPZ2;

19

20 % construct conPolyZono object

21 c = [0;0];

22 G = [1 0 1 -1;0 1 1 1];

23 E = [1 0 1 2;0 1 1 0;0 0 1 1];

24 A = [1 -0.5 0.5];

25 b = 0.5;

26 R = [0 1 2;1 0 0;0 1 0];

27
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28 cPZ = conPolyZono(c,G,E,A,b,R);

29

30 % compute quadratic map

31 Q{1} = [0.5 0.5; 0 -0.5];

32 Q{2} = [-1 0; 1 1];

33

34 res = quadMap(cPZ,Q);

35

36 % visualization

37 figure; hold on

38 plot(cPZ,[1,2],’b’);

39

40 figure; hold on

41 plot(res,[1,2],’r’,’Splits’,25);

The plot generated in lines 37-41 is shown in Fig. 30 and Fig. 31.
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Figure 30: Constrained polynomial zono-
tope generated in lines 21-28 of the con-
strained polynomial zonotope example in
Sec. 9.1.6
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Figure 31: Quadratic map computed in
lines 31-34 of the constrained polynomial
zonotope example in Sec. 9.1.6.
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9.1.7 Capsules

The following MATLAB code demonstrates how to perform set-based computations on capsules
(see Sec. 2.2.1.7):

1 % construct a capsule

2 c = [1;2];

3 g = [2;1];

4 r = 1;

5

6 C1 = capsule(c,g,r)

7

8 % linear map of a capsule

9 A = [0.5 0.2; -0.1 0.4];

10 C2 = A * C1;

11

12 % shift the center of a capsule

13 s = [0;1];

14 C3 = C2 + s;

15

16 % check capsule-in-capsule containment

17 res1 = contains(C1,C2);

18 res2 = contains(C1,C3);

19

20 disp([’C2 in C1?: ’,num2str(res1)]);

21 disp([’C3 in C1?: ’,num2str(res2)]);

22

23

24 % visualization

25 figure; hold on

26 plot(C1,[1,2],’r’);

27 plot(C2,[1,2],’g’);

28 plot(C3,[1,2],’b’);

This produces the workspace output

id: 0

dimension: 2

center:

1

2

generator:

2

1

radius:

1

C2 in C1?: 0

C3 in C1?: 1

The plot generated in lines 25-28 is shown in Fig. 32.
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Figure 32: Capsules generated in lines 6, 10, and 14 of the capsule example in Sec. 9.1.7.

9.1.8 Zonotope Bundles

The following MATLAB code demonstrates how to perform set-based computations on zonotope
bundles (see Sec. 2.2.1.8):

1 Z{1} = zonotope([1 1 1; 1 -1 1]); % create zonotope Z1;

2 Z{2} = zonotope([-1 1 0; 1 0 1]); % create zonotope Z2;

3 Zb = zonoBundle(Z); % instantiate zonotope bundle from Z1, Z2

4 vol = volume(Zb) % compute and display volume of zonotope bundle

5

6 figure; hold on

7 plot(Z{1}); % plot Z1

8 plot(Z{2}); % plot Z2

9 plot(Zb,[1 2],’FaceColor’,[.675 .675 .675]); % plot Zb in gray

This produces the workspace output

vol =

1.0000

The plot generated in lines 7-9 is shown in Fig. 33.

9.1.9 Constrained Zonotopes

The following MATLAB code demonstrates how to perform set-based computations on con-
strained zonotopes (see Sec. 2.2.1.9):

1 Z = [0 1 0 1; 0 1 2 -1]; % zonotope (center + generators)

2 A = [-2 1 -1]; % constraints (matrix A)

2 b = 2; % constraints (vector b)

3

4 cZ = conZonotope(Z,A,b) % construct conZonotope object

6

7 plotZono(cZ,[1,2]) % visualize conZonotope object + linear zonotope
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Figure 33: Sets generated in lines 7-9 of the zonotope bundle example in Sec. 9.1.8.

This produces the workspace output

id: 0

dimension: 2

c:

0

0

g_i:

1 0 1

1 2 -1

A:

-2 1 -1

b:

2

The plot generated in line 9 is shown in Fig. 34. Fig. 35 displays a visualization of the constraints
for the conZonotope object that is shown in Fig. 34.

9.1.10 Probabilistic Zonotopes

The following MATLAB code demonstrates how to compute with probabilistic zonotopes (see
Sec. 2.2.1.10):

1 Z1=[10; 0]; % uncertain center

2 Z2=[0.6 1.2 ; 0.6 -1.2]; % generators with normally distributed factors

3 pZ=probZonotope(Z1,Z2); % probabilistic zonotope

4

5 M=[-1 -1;1 -1]*0.2; % mapping matrix

6 pZencl = enclose(pZ,M); % probabilistic enclosure of pZ and M*pZ

7

8 figure % initialize figure

9 hold on

10 camlight headlight

11

12 plot(pZ,[1 2],’FaceColor’,[0.2 0.2 0.2],...
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Figure 34: Zonotope (blue) and the corre-
sponding constrained zonotope (red) gener-
ated in the constrained zonotope example
in Sec. 9.1.9
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Figure 35: Visualization of the constraints
for the conZonotope object generated in
the constrained zonotope example in Sec.
9.1.9.

13 ’EdgeColor’,’none’, ’FaceLighting’,’phong’); % plot pZ

14

15 plot(expm(M)*pZ,[1,2],’FaceColor’,[0.5 0.5 0.5],...

16 ’EdgeColor’,’none’, ’FaceLighting’,’phong’); % plot expm(M)*pZ

17

18 plot(pZencl,[1,2],’k’,’FaceColor’,’none’) % plot enclosure

19

20 campos([-3,-51,1]); % set camera position

21 drawnow; % draw 3D view

The plot generated in lines 8-21 is shown in Fig. 36.

Figure 36: Sets generated in lines 10-15 of the probabilistic zonotope example in Sec. 9.1.10.

9.1.11 Halfspace

The following MATLAB code demonstrates how to compute with halfspaces (see Sec. 2.2.2.2):

1 % construct halfspace object

2 c = [1;1];
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3 d = 1;

4

5 H = halfspace(c,d);

6

7 % visualize the halfspace

8 figure

9 hold on

10 xlim([-2,4]);

11 ylim([-3,3]);

12

13 plot(H,[1,2],’r’,’FaceAlpha’,0.5);

14

15 % intersect halfspace with polytope

16 poly = mptPolytope([1 0;-1 0;0 1;0 -1;1 1],[3;1;2;2;2]);

17

18 poly_ = H & poly;

19

20 plot(poly_,[1,2],’FaceColor’,[0 .7 0]);

21 plot(poly,[1,2],’b’);

The generated plot is shown in Fig. 37.

Figure 37: Intersection (green) between the halfspace (red) and the polytope (blue) generated
by the example in Sec. 9.1.11.

9.1.12 Constrained Hyperplane

The following MATLAB code demonstrates how to compute with constrained hyperplanes (see
Sec. 2.2.2.1):

1 % construct constrained hyperplane

2 c = [1;1];

3 d = 1;

4 A = [1 0;-1 0;0 1;0 -1;1 1];

5 b = [3;1;2;2;2];

6

7 hyp = conHyperplane(c,d,A,b);

8
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9 % visualize the constrained hyperplane

10 figure

11 hold on

12 xlim([-2,4]);

13 ylim([-3,3]);

14

15 plot(conHyperplane(c,d),[1,2],’r’); % unconstrained hyperplane

16 plot(mptPolytope(A,b),[1,2],’g’); % inequality constraints

17

18 plot(hyp,[1,2],’b’); % constrained hyperplane

The generated plot is shown in Fig. 38.
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Figure 38: Constrained hyperplane generated by the example code in Sec. 9.1.12.
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9.1.13 Level Sets

The following MATLAB code demonstrates how to compute with level sets (see Sec. 2.2.2.3):

1 % construct level sets

2 syms x y

3 eq = sin(x) + y;

4

5 ls1 = levelSet(eq,[x;y],’==’);

6 ls2 = levelSet(eq,[x;y],’<=’);

7

8 % visualize the level sets

9 subplot(1,2,1)

10 xlim([-1.5,1.5]);

11 ylim([-1,1]);

12 plot(ls1,[1,2],’b’);

13

14 subplot(1,2,2)

15 xlim([-1.5,1.5]);

16 ylim([-1,1]);

17 plot(ls2,[1,2],’r’,’FaceAlpha’,0.5);

The generated plot is shown in Fig. 39.

Figure 39: Level sets from the example in Sec. 9.1.13 defined as in (16) (left) and as in (18)
(rigth).
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9.1.14 Taylor Models

The following MATLAB code demonstrates how to compute with Taylor models (see Sec. 2.2.3.1):

1 a1 = interval(-1, 2); % generate a scalar interval [-1,2]

2 a2 = interval(2, 3); % generate a scalar interval [2,3]

3 a3 = interval(-6, -4); % generate a scalar interval [-6,4]

4 a4 = interval(4, 6); % generate a scalar interval [4,6]

5

6 b1 = taylm(a1, 6); % Taylor model with maximum order of 6 and name a1

7 b2 = taylm(a2, 6); % Taylor model with maximum order of 6 and name a2

8 b3 = taylm(a3, 6); % Taylor model with maximum order of 6 and name a3

9 b4 = taylm(a4, 6); % Taylor model with maximum order of 6 and name a4

10

11 B1 = [b1; b2] % generate a row of Taylor models

12 B2 = [b3; b4] % generate a row of Taylor models

13

14 B1 + B2 % addition

15 B1’ * B2 % matrix multiplication

16 B1 .* B2 % pointwise multiplication

17 B1 / 2 % division by scalar

18 B1 ./ B2 % pointwise division

19 B1.ˆ3 % power function

20 sin(B1) % sine function

21 sin(B1(1,1)) + B1(2,1).ˆ2 - B1’ * B2 % combination of functions

The resulting workspace output is:

B1 =

0.5 + 1.5*a1 + [0.00000,0.00000]

2.5 + 0.5*a2 + [0.00000,0.00000]

B2 =

-5.0 + a3 + [0.00000,0.00000]

5.0 + a4 + [0.00000,0.00000]

B1 + B2 =

-4.5 + 1.5*a1 + a3 + [0.00000,0.00000]

7.5 + 0.5*a2 + a4 + [0.00000,0.00000]

B1’ * B2 =

10.0 - 7.5*a1 + 2.5*a2 + 0.5*a3 + 2.5*a4 + 1.5*a1*a3 + 0.5*a2*a4 + [0.00000,0.00000]

B1 .* B2 =

-2.5 - 7.5*a1 + 0.5*a3 + 1.5*a1*a3 + [0.00000,0.00000]

12.5 + 2.5*a2 + 2.5*a4 + 0.5*a2*a4 + [0.00000,0.00000]

B1 / 2 =

0.25 + 0.75*a1 + [0.00000,0.00000]

1.25 + 0.25*a2 + [0.00000,0.00000]

B1 ./ B2 =

-0.1 - 0.3*a1 - 0.02*a3 - 0.06*a1*a3 - 0.004*a3^2 - 0.012*a1*a3^2

- 0.0008*a3^3 - 0.0024*a1*a3^3 - 0.00016*a3^4 - 0.00048*a1*a3^4

- 0.000032*a3^5 - 0.000096*a1*a3^5 - 6.4e-6*a3^6 + [-0.00005,0.00005]

0.5 + 0.1*a2 - 0.1*a4 - 0.02*a2*a4 + 0.02*a4^2 + 0.004*a2*a4^2

- 0.004*a4^3 - 0.0008*a2*a4^3 + 0.0008*a4^4 + 0.00016*a2*a4^4

- 0.00016*a4^5 - 0.000032*a2*a4^5 + 0.000032*a4^6 + [-0.00005,0.00005]

B1.^3 =
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0.125 + 1.125*a1 + 3.375*a1^2 + 3.375*a1^3 + [0.00000,0.00000]

15.625 + 9.375*a2 + 1.875*a2^2 + 0.125*a2^3 + [0.00000,0.00000]

sin(B1) =

0.47943 + 1.3164*a1 - 0.53935*a1^2 - 0.49364*a1^3 + 0.10113*a1^4

+ 0.055535*a1^5 - 0.0075847*a1^6 + [-0.00339,0.00339]

0.59847 - 0.40057*a2 - 0.074809*a2^2 + 0.01669*a2^3 + 0.0015585*a2^4

- 0.00020863*a2^5 - 0.000012988*a2^6 + [-0.00000,0.00000]

sin(B1(1,1)) + B1(2,1).^2 - B1’ * B2 =

-3.2706 + 8.8164*a1 - 0.5*a3 - 2.5*a4 - 0.53935*a1^2 + 0.25*a2^2

- 1.5*a1*a3 - 0.5*a2*a4 - 0.49364*a1^3 + 0.10113*a1^4

+ 0.055535*a1^5 - 0.0075847*a1^6 + [-0.00339,0.00339]

9.1.15 Affine

The following MATLAB code demonstrates how to use affine arithmetics in CORA (see Sec. 2.2.3.2):

1 % create affine object

2 I = interval(-1,1);

3 aff = affine(I);

4

5 % create taylor model object (for comparison)

6 maxOrder = 1;

7 tay = taylm(int,maxOrder,’x’);

8

9 % define function

10 f = @(x) sin(x) * (x+1);

11

12 % evaluate the function with affine arithmetic and taylor model

13 intAff = interval(f(aff))

14 intTay = interval(f(tay))

The resulting workspace output is:

intAff =

[-1.84147,2.84147]

intTay =

[-1.84147,2.84147]

9.1.16 Zoo

The following MATLAB code demonstrates how to use the class zoo in CORA (see Sec. 2.2.3.3):

1 % create zoo object

2 I = interval(-1,1);

3 methods = {’interval’,’taylm(int)’};

4 maxOrder = 3;

5 z = zoo(I,methods,maxOrder);

6

7 % create taylor model object (for comparison)

8 maxOrder = 10;

9 tay = taylm(I,maxOrder,’x’);

10

11 % define function

12 f = @(x) sin(x) * (x+1);

13

14 % evaluate the function with zoo-object and taylor model
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15 intZoo = interval(f(z))

16 intTay = interval(f(tay))

The resulting workspace output is:

intZoo =

[-1.34206,1.68294]

intTay =

[-1.34207,2.18354]

9.2 Matrix Set Representations

In this section we present examples for set-based computation using the different matrix set
representations in Sec. 3.

9.2.1 Matrix Polytopes

The following MATLAB code demonstrates some of the introduced methods:

1 P1{1} = [1 2; 3 4]; % 1st vertex of matrix polytope P1

2 P1{2} = [2 2; 3 3]; % 2nd vertex of matrix polytope P1

3 matP1 = matPolytope(P1); % instantiate matrix polytope P1

4

5 P2{1} = [-1 2; 2 -1]; % 1st vertex of matrix polytope P2

6 P2{2} = [-1 1; 1 -1]; % 2nd vertex of matrix polytope P2

7 matP2 = matPolytope(P2); % instantiate matrix polytope P2

8

9 matP3 = matP1 + matP2 % perform Minkowski addition and display result

10 matP4 = matP1 * matP2 % compute multiplication of and display result

11

12 intP = intervalMatrix(matP1) % compute interval matrix and display result

This produces the workspace output

dimension:

2

nr of vertices:

4

vertices:

0 4

5 3

---------------

0 3

4 3

---------------

1 4

5 2

---------------

1 3
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4 2

---------------

dimension:

2

nr of vertices:

4

vertices:

3 0

5 2

---------------

1 -1

1 -1

---------------

2 2

3 3

---------------

0 0

0 0

---------------

dimension:

2

left limit:

1 2

3 3

right limit:

2 2

3 4

9.2.2 Matrix Zonotopes

The following MATLAB code demonstrates some of the introduced methods:

1 Zcenter = [1 2; 3 4]; % center of matrix zonotope Z1

2 Zdelta{1} = [1 0; 1 1]; % generators of matrix zonotope Z1

3 matZ1 = matZonotope(Zcenter, Zdelta); % instantiate matrix zonotope Z1

4

5 Zcenter = [-1 2; 2 -1]; % center of matrix zonotope Z2

6 Zdelta{1} = [0 0.5; 0.5 0]; % generators of matrix zonotope Z2

7 matZ2 = matZonotope(Zcenter, Zdelta); % instantiate matrix zonotope Z2

8

9 matZ3 = matZ1 + matZ2 % perform Minkowski addition and display result

10 matZ4 = matZ1 * matZ2 % compute multiplication of and display result

11

12 intZ = intervalMatrix(matZ1) % compute interval matrix and display result
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This produces the workspace output

dimension:

2

nr of generators:

2

center:

0 4

5 3

generators:

1 0

1 1

---------------

0 0.5000

0.5000 0

---------------

dimension:

1

nr of generators:

3

center:

3 0

5 2

generators:

1.0000 0.5000

2.0000 1.5000

---------------

-1 2

1 1

---------------

0 0.5000

0.5000 0.5000

---------------

dimension:

2

left limit:

0 2

2 3

right limit:
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2 2

4 5

9.2.3 Interval Matrices

The following MATLAB code demonstrates some of the introduced methods:

1 Mcenter = [1 2; 3 4]; % center of interval matrix M1

2 Mdelta = [1 0; 1 1]; % delta of interval matrix M1

3 intM1 = intervalMatrix(Mcenter, Mdelta); % instantiate interval matrix M1

4

5 Mcenter = [-1 2; 2 -1]; % center of interval matrix M2

6 Mdelta = [0 0.5; 0.5 0]; % delta of interval matrix M2

7 intM2 = intervalMatrix(Mcenter, Mdelta); % instantiate interval matrix M2

8

9 intM3 = intM1 + intM2 % perform Minkowski addition and display result

10 intM4 = intM1 * intM2 % compute multiplication of and display result

11

12 matZ = matZonotope(intM1) % compute matrix zonotope and display result

This produces the workspace output

dimension:

2

left limit:

-1.0000 3.5000

3.5000 2.0000

right limit:

1.0000 4.5000

6.5000 4.0000

dimension:

2

left limit:

1.0000 -3.0000

-0.5000 -3.0000

right limit:

5.0000 3.0000

10.5000 7.0000

dimension:

2

nr of generators:

3

center:

1 2

3 4
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generators:

1 0

0 0

---------------

0 0

1 0

---------------

0 0

0 1

---------------

9.3 Continuous Dynamics

This section presents a variety of examples for continuous dynamics categorized along the differ-
ent classes for dynamic systems realized in CORA. All subsequent examples can handle uncertain
inputs. Uncertain parameters can be realized using different techniques:

1. Introduce constant parameters as additional states and assign the dynamics ẋi = 0 to
them. The disadvantage is that the dimension of the system is growing.

2. Introduce time-varying parameters as additional uncertain inputs.

3. Use specialized functions in CORA that can handle uncertain parameters.

It is generally advised to use the last technique, but there is no proof that this technique always
provides better results compared to the other techniques.

9.3.1 Linear Dynamics

For linear dynamics we demonstrate the usage of two different reachability algorithms.

Standard Algorithm

First, we consider the standard algorithm from [24]. We use a simple academic example from [25,
Sec. 3.2.3] with not much focus on a connection to a real system. However, since linear systems
are solely determined by their state and input matrix, adjusting this example to any other linear
system is straightforward. Here, the system dynamics is

ẋ =




−1 −4 0 0 0
4 −1 0 0 0
0 0 −3 1 0
0 0 −1 −3 0
0 0 0 0 −2



x+ u(t), x(0) ∈




[0.9, 1.1]
[0.9, 1.1]
[0.9, 1.1]
[0.9, 1.1]
[0.9, 1.1]



, u(t) ∈




[0.9, 1.1]
[−0.25, 0.25]
[−0.1, 0.1]
[0.25, 0.75]

[−0.75,−0.25]



.

The MATLAB code that implements the simulation and reachability analysis of the linear
example is (see file examples/contDynamics/linearSys/example linear reach 01 5dim.m in the
CORA toolbox):

% Parameter ---------------------------------------------------------------

params.tFinal = 5;

params.R0 = zonotope([ones(5,1),0.1*diag(ones(5,1))]);

params.U = zonotope(interval([0.9; -0.25; -0.1; 0.25; -0.75], ...
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[1.1; 0.25; 0.1; 0.75; -0.25]));

% Reachability Settings ---------------------------------------------------

options.timeStep = 0.02;

options.taylorTerms = 4;

options.zonotopeOrder = 20;

% System Dynamics ---------------------------------------------------------

A = [-1 -4 0 0 0; 4 -1 0 0 0; 0 0 -3 1 0; 0 0 -1 -3 0; 0 0 0 0 -2];

B = 1;

fiveDimSys = linearSys(’fiveDimSys’,A,B);

% Reachability Analysis ---------------------------------------------------

tic

R = reach(fiveDimSys, params, options);

tComp = toc;

disp([’computation time of reachable set: ’,num2str(tComp)]);

% Simulation --------------------------------------------------------------

simOpt.points = 25;

simOpt.fracVert = 0.5;

simOpt.fracInpVert = 0.5;

simOpt.nrConstInp = 10;

simRes = simulateRandom(fiveDimSys, params, simOpt);

% Visualization -----------------------------------------------------------

% plot different projections

dims = {[1 2],[3 4]};

for k = 1:length(dims)

figure; hold on

projDims = dims{k};

% plot reachable sets

plot(R,projDims,’FaceColor’,[.8 .8 .8],’EdgeColor’,’b’);

% plot initial set

plot(params.R0,projDims,’w-’,’lineWidth’,2);

% plot simulation results

plot(simRes,projDims,’y’);

% label plot

xlabel([’x_{’,num2str(projDims(1)),’}’]);

ylabel([’x_{’,num2str(projDims(2)),’}’]);
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end

The reachable set and the simulation are plotted in Fig. 40 for a time horizon of tf = 5.
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Figure 40: Illustration of the reachable set of the linear example. The white box shows the
initial set and the black lines show simulated trajectories.

Adaptive Algorithm

One major disadvantage of the standard algorithm used in the example above is that the user
is required to manually tune the time step size, the number of Taylor terms, and the zonotope
order to obtain a tight enclosure of the reachable set. The novel adaptive algorithm from [50]
tunes these parameters automatically in such a way that a certain precision is achieved. We
consider the two-dimensional system

ẋ =

[
−0.7 −2
2 −0.7

]
x+ u(t), x(0) ∈

[
[9.5, 10.5]
[4.5, 5.5]

]
, u(t) ∈

[
[0.75, 1.25]
[0.75, 1.25]

]
.

The MATLAB code that implements reachability analysis with the adaptive algorithm (see file
examples/contDynamics/linearSys/example linear reach 04 adaptive.m in the CORA toolbox):

% System Dynamics ---------------------------------------------------------

A = [-0.7 -2; 2 -0.7];

B = 1;

sys = linearSys(’sys’,A,B);

% Parameter ---------------------------------------------------------------

dim = length(A);

params.tFinal = 5;

params.R0 = zonotope([[10; 5],0.5*eye(dim)]); % initial set

params.U = zonotope([ones(dim,1),0.25*eye(dim)]); % uncertain inputs

% Reachability Settings ---------------------------------------------------
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options.linAlg = ’adaptive’; % adaptive parameter tuning

% Simulation --------------------------------------------------------------

simOpt.points = 10;

simOpt.fracVert = 0.5;

simOpt.fracInpVert = 0.5;

simOpt.nrConstInp = 10;

simRes = simulateRandom(sys, params, simOpt);

% Reachability Analysis ---------------------------------------------------

errs = [1;0.05];

stepssS = zeros(length(errs),1);

timesS = zeros(length(errs),1);

R = cell(length(errs),1);

% compute reachable sets for different max. allowed errors

for i=1:length(errs)

options.error = errs(i);

tic

R{i} = reach(sys,params,options);

timesS(i) = toc;

stepssS(i) = length(R{i}.timeInterval.set);

end

% Visualization -----------------------------------------------------------

figure; hold on; box on;

projDims = [1,2];

% plot reachable set

plot(R{1},projDims,’k’,’EdgeColor’,’k’);

plot(R{2},projDims,’FaceColor’,[0.7,0.7,0.7],’EdgeColor’,[0.7,0.7,0.7]);

% plot initial set

plot(params.R0,projDims,’w’,’LineWidth’,1.5);

% plot simulation

plot(simRes,projDims,’b’,’LineWidth’,0.5);

% plot unsafe set

unsafeSet = interval([2;-2],[4;2]);

plot(unsafeSet,projDims,’FaceColor’,[227,114,34]/255,...

’EdgeColor’,’r’,’LineWidth’,2);

% formatting

xlabel(’x_1’); ylabel(’x_2’);

title(’2D system’);

The reachable sets computed with the adaptive algorithm for two different precision values are
plotted in Fig. 41 for a time horizon of tf = 5.
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Figure 41: Illustration of the reachable set computed with the adaptive algorithm with a re-
quested precision of options.error = 1 (black) and options.error = 0.05 (gray).

9.3.2 Linear Dynamics with Uncertain Parameters

For linear dynamics with uncertain parameters, we use the transmission line example from [79,
Sec. 4.5.2], which can be modeled as an electric circuit with resistors, inductors, and capacitors.
The parameters of each component have uncertain values as described in [79, Sec. 4.5.2]. This
example shows how one can better take care of dependencies of parameters by using matrix
zonotopes instead of interval matrices.

The MATLAB code that implements the simulation and reachability analysis of the linear
example with uncertain parameters is (see file examples/contDynamics/linParamSys/
example linearParam reach 01 rlc const.m in the CORA toolbox):

% System Dynamics ---------------------------------------------------------

% get matrix zonotopes of the model

[matZ_A,matZ_B] = RLCcircuit();

matI_A = intervalMatrix(matZ_A);

dim = matZ_A.dim;

% create linear parametric systems with constant parameters

sysMatZono = linParamSys(matZ_A, eye(dim));

sysIntMat = linParamSys(matI_A, eye(dim));

% Parameter ---------------------------------------------------------------

% compute initial set

u0 = intervalMatrix(0,0.2); % range of voltages

intA = intervalMatrix(matZ_A);

invAmid = inv(center(intA.int)); % inverse of A

intB = intervalMatrix(matZ_B);

R0 = invAmid*intB*u0 + intervalMatrix(0,1e-3*ones(dim,1));

130



9 EXAMPLES

params.R0 = zonotope(interval(R0)); % convert initial set to zonotope

% uncertain inputs

u = intervalMatrix(1,0.01);

params.U = zonotope(interval(intB*u));

% final time

params.tFinal = 0.3;

% Reachability Settings ---------------------------------------------------

options.intermediateOrder = 2;

options.timeStep = 0.001;

options.zonotopeOrder = 400;

options.taylorTerms = 8;

options.compTimePoint = false;

% Reachability Analysis ---------------------------------------------------

% compute reachable set using matrix zonotopes

tic

RmatZono = reach(sysMatZono, params, options);

tComp = toc;

disp([’computation time (matrix zonotopes): ’,num2str(tComp)]);

% compute reachable set using interval matrices

tic

RintMat = reach(sysIntMat, params, options);

tComp = toc;

disp([’computation time (interval matrices): ’,num2str(tComp)]);

% Simulation --------------------------------------------------------------

simOpt.points = 60;

simOpt.fracVert = 0.5;

simOpt.fracInpVert = 0.5;

simOpt.nrConstInp = 6;

simRes = simulateRandom(sysIntMat, params, simOpt);

% Visualization -----------------------------------------------------------

% PLOT 1: state space

figure;

hold on

projDim = [20,40];

% plot reachable sets

hanIntMat = plot(RintMat,projDim,’FaceColor’,[.6 .6 .6],’Order’,10);

hanMatZono = plot(RmatZono,projDim,’FaceColor’,[.8 .8 .8],’Order’,10);

% plot initial set
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plot(params.R0,projDim,’k’,’FaceColor’,’k’);

% plot simulation results

plot(simRes,projDim);

% label plot

xlabel([’x_{’,num2str(projDim(1)),’}’]);

ylabel([’x_{’,num2str(projDim(2)),’}’]);

legend([hanIntMat,hanMatZono],’Interval matrix’,’Matrix zonotope’);

% PLOT 2: reachable set over time

figure;

hold on

% plot time elapse

hanIntMat = plotOverTime(RintMat,0.5*dim,’FaceColor’,[.6 .6 .6]);

hanMatZono = plotOverTime(RmatZono,0.5*dim,’FaceColor’,[.8 .8 .8]);

% plot simulation results

plotOverTime(simRes,0.5*dim);

% label plot

xlabel(’t’);

ylabel([’x_{’,num2str(0.5*dim),’}’]);

legend([hanIntMat,hanMatZono],’Interval matrix’,’Matrix zonotope’);

The reachable set and the simulation are plotted in Fig. 42 for a time horizon of tf = 0.3.
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Figure 42: Illustration of the reachable set of the transmission example. A white box shows the
initial set and the black lines are simulated trajectories.

9.3.3 Nonlinear Dynamics

For nonlinear dynamics, several examples are presented.
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Tank System

The first example is the tank system from [9] where water flows from one tank into another one.
This example can be used to study the effect of water power plants on the water level of rivers.
This example can be easy extended by several tanks and thus is a nice benchmark example to
study the scalability of algorithms for reachability analysis. CORA can compute the reachable
set with at least 100 tanks.

The MATLAB code that implements the simulation and reachability analysis of the tank exam-
ple is (see file examples/contDynamics/nonlinearSys/ example nonlinear reach 01 tank.m in the
CORA toolbox):

% Parameter ---------------------------------------------------------------

params.tFinal = 400;

params.R0 = zonotope([[2; 4; 4; 2; 10; 4],0.2*eye(6)]);

params.U = zonotope([0,0.005]);

% Reachability Settings ---------------------------------------------------

options.timeStep = 1;

options.taylorTerms = 4;

options.zonotopeOrder = 50;

options.intermediateOrder = 5;

options.errorOrder = 1;

options.alg = ’lin’;

options.tensorOrder = 2;

% System Dynamics ---------------------------------------------------------

tank = nonlinearSys(@tank6Eq);

% Reachability Analysis ---------------------------------------------------

tic

R = reach(tank, params, options);

tComp = toc;

disp([’computation time of reachable set: ’,num2str(tComp)]);

% Simulation --------------------------------------------------------------

simOpt.points = 60;

simOpt.fracVert = 0.5;

simOpt.fracInpVert = 0.5;

simOpt.nrConstInp = 6;

simRes = simulateRandom(tank, params, simOpt);

% Visualization -----------------------------------------------------------

dims = {[1 2],[3 4],[5 6]};
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for k = 1:length(dims)

figure; hold on

projDim = dims{k};

% plot reachable sets

plot(R,projDim,’FaceColor’,[.8 .8 .8]);

% plot initial set

plot(params.R0,projDim,’k’,’FaceColor’,’w’);

% plot simulation results

plot(simRes,projDim,’k’);

% label plot

xlabel([’x_{’,num2str(projDim(1)),’}’]);

ylabel([’x_{’,num2str(projDim(2)),’}’]);

end

The difference to specifying a linear system is that a link to a nonlinear differential equation
has to be provided, rather than the system matrix A and the input matrix B. The nonlinear
system model ẋ = f(x, u), where x is the state and u is the input, is shown below:

function dx = tank6Eq(x,u)

% parameter

k = 0.015;

k2 = 0.01;

g = 9.81;

% differential equations

dx(1,1) = u(1)+0.1+k2*(4-x(6))-k*sqrt(2*g)*sqrt(x(1)); % tank 1

dx(2,1) = k*sqrt(2*g)*(sqrt(x(1))-sqrt(x(2))); % tank 2

dx(3,1) = k*sqrt(2*g)*(sqrt(x(2))-sqrt(x(3))); % tank 3

dx(4,1) = k*sqrt(2*g)*(sqrt(x(3))-sqrt(x(4))); % tank 4

dx(5,1) = k*sqrt(2*g)*(sqrt(x(4))-sqrt(x(5))); % tank 5

dx(6,1) = k*sqrt(2*g)*(sqrt(x(5))-sqrt(x(6))); % tank 6

The output of this function is ẋ for a given time t, state x, and input u.

Fig. 43 shows the reachable set and the simulation for a time horizon of tf = 400.
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Figure 43: Illustration of the reachable set of the linear example. The white box shows the
initial set and the black lines show simulated trajectories.
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Van der Pol Oscillator

The Van der Pol oscillator is a standard example for limit cycles. By using reachability
analysis one can show that one always returns to the initial set so that the obtained set is
an invariant set. This example is used in [9] to demonstrate that one can obtain a solu-
tion even if the linearization error becomes too large by splitting the reachable set. Later,
in [30] an improved method is presented that requires less splitting. This example demon-
strates the capabilities of the simpler approach presented in [9]. Due to the similarity of the
MATLAB code compared to the previous tank example, we only present the reachable set
in Fig. 44. The corresponding code can be found in the file examples/contDynamics/nonlin-
earSys/ example nonlinear reach 03 vanDerPol splitting.m in the CORA toolbox.

x
1

-3 -2 -1 0 1 2 3

x
2

-3

-2

-1

0

1

2

3

Figure 44: Illustration of the reachable set of the Van der Pol oscillator. The white box shows
the initial set and the black lines show simulated trajectories.

Seven-Dimensional Example for Non-Convex Set Representation

This academic example is used to demonstrate the benefits of using higher-order abstractions
of nonlinear systems compared to linear abstractions. However, since higher order abstrac-
tions do not preserve convexity when propagating reachable sets, the non-convex set repre-
sentation polynomial zonotope is used as presented in [30]. Please note that the entire reach-
able set for the complete time horizon is typically non-convex, even when the propagation
from one point in time to another point in time is convex. Due to the similarity of the
MATLAB code compared to the previous tank example, we only present the reachable set
in Fig. 45. The corresponding code can be found in the file examples/contDynamics/nonlin-
earSys/ example nonlinear reach 04 laubLoomis polyZonotope.m in the CORA toolbox.

Autonomous Car Following a Reference Trajectory

This example presents the reachable set of an automated vehicle developed at the German
Aerospace Center. The difference of this example compared to the previous example is that
a reference trajectory is followed. Similar models have been used in previous publications,
see e.g., [80–82]. In CORA, this only requires changing the input in options.uTrans from
a vector to a matrix, where each column vector is the reference value at the next sampled
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Figure 45: Illustration of the reachable set of the seven-dimensional example for non-convex
set representation. The white box shows the initial set and the black lines show simulated
trajectories.

point in time. Due to the similarity of the MATLAB code compared to the previous tank
example, we only present the reachable set in Fig. 46, where the reference trajectory is plot-
ted in red. The corresponding code can be found in the file examples/contDynamics/nonlin-
earSys/ example nonlinear reach 05 autonomousCar.m in the CORA toolbox.
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Figure 46: Illustration of the reachable set of the seven-dimensional example for non-convex
set representation. The white box shows the initial set and the black lines show simulated
trajectories.

9.3.4 Nonlinear Dynamics with Uncertain Parameters

As for linear systems, specialized algorithms have been developed for considering uncertain
parameters of nonlinear systems. To better compare the results, we again use the tank system
whose reachable set we know from a previous example. The plots show not only the case with
uncertain parameters, but also the one without uncertain parameters.

The MATLAB code that implements the simulation and reachability analysis of the non-
linear example with uncertain parameters is (see file examples/contDynamics/nonlinParam-
Sys/ example nonlinearParam reach 01 tank.m in the CORA toolbox):

% Parameter ---------------------------------------------------------------

params.tFinal = 400; % final time
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params.R0 = zonotope([[2; 4; 4; 2; 10; 4],0.2*eye(6)]); % initial set

params.U = zonotope([0,0.005]); % uncertain input

% Reachability Settings ---------------------------------------------------

options.timeStep=0.5;

options.taylorTerms=4;

options.intermediateOrder = 4;

options.zonotopeOrder=10;

options.tensorOrder = 2;

options.alg = ’lin’;

% System Dynamics ---------------------------------------------------------

% tank system with certain pararmters

tank = nonlinearSys(@tank6Eq);

% tank system with uncertain parameters

optionsParam = options;

optionsParam.paramInt = interval(0.0148,0.015);

tankParam = nonlinParamSys(@tank6paramEq);

% Reachability Analysis ---------------------------------------------------

% compute reachable set of tank system without uncertain parameters

tic

RcontNoParam = reach(tank, params, options);

tComp = toc;

disp([’computation time (without uncertain parameters): ’,num2str(tComp)]);

% compute reachable set of tank system with uncertain parameters

tic

RcontParam = reach(tankParam, params, optionsParam);

tComp = toc;

disp([’computation time (with uncertain parameters): ’,num2str(tComp)]);

% Simulation --------------------------------------------------------------

% settings for random simulation

simOpt.points = 60; % number of initial points

simOpt.fracVert = 0.5; % fraction of vertices initial set

simOpt.fracInpVert = 0.5; % fraction of vertices input set

simOpt.nrConstInp = 6; % changes of input over time horizon

% random simulation

simRes = simulateRandom(tank,params,simOpt);

% Visualization -----------------------------------------------------------

dims = {[1,2],[3,4],[5,6]};

% plot different projections
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for i = 1:length(dims)

figure; hold on

projDims = dims{i};

% plot reachable sets

hanParam = plot(RcontParam,projDims,’FaceColor’,[.7 .7 .7])

hanNoParam = plot(RcontNoParam,projDims,’w’);

% plot initial set

plot(params.R0,projDims,’k’,’FaceColor’,’w’);

% plot simulation results

plot(simRes,projDims);

% label plot

xlabel([’x_{’,num2str(projDims(1)),’}’]);

ylabel([’x_{’,num2str(projDims(2)),’}’]);

end

The reachable set and the simulation are plotted in Fig. 47 for a time horizon of tf = 400.
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Figure 47: Illustration of the reachable set of the nonlinear parametric example. The gray region
shows the reachable set with uncertain parameters, while the white area shows the reachable
set without uncertain parameters. Another white box shows the initial set and the black lines
show simulated trajectories.

9.3.5 Discrete-time Nonlinear Systems

We demonstrate the calculation of the reachable set for a time-discrete system with the example
of a stirred tank reactor model. The original continuous time system model is given in [83].
Using the trapezoidal rule for time discretization, we obtained the following nonlinear discrete
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time system:

CA(k + 1) =
1− qτ

2V − k0 · τ · exp
(
− E

R·T (k)

)
· CA(k) +

q
V · CAf · τ

1 + qτ
2V + w1(k) · τ

T (k + 1) =
T (k) ·

(
1− τ

2 − τ ·UA
2V ·ρ·Cp

)
+ τ ·

(
Tf · q

V + UA·u(CA(k),T (k))
V ·ρ·Cp

)

1 + τ ·q
2V + τ ·UA

2V ·ρ·Cp

−
CA(k) · ∆H·k0·τ

ρ·Cp
· exp

(
− E

R·T (k)

)

1 + τ ·q
2V + τ ·UA

2V ·ρ·Cp

+ τ · w2(k) ,

(42)

where u(CA(k), T (k)) = −3 · CA(k) − 6.9 · T (k) is the linear control law, w1(k) ∈ [−0.1, 0.1]
and w2(k) ∈ [−2, 2] are bounded disturbances, and τ is the time step size. The values for the
model parameters are given in [83]. The MATLAB code that implements the simulation and
reachability analysis for the nonlinear discrete time model is shown below (see file examples/con-
tDynamics/nonlinearSysDT/ example nonlinearDT reach cstrDisc.m in the CORA toolbox):

% Parameter --------------------------------------------------------------

params.tFinal = 0.15;

params.R0 = zonotope([[-0.15;-45],diag([0.005;3])]);

params.U = zonotope([zeros(2,1),diag([0.1;2])]);

% Reachability Settings --------------------------------------------------

options.zonotopeOrder = 100;

options.tensorOrder = 3;

options.errorOrder = 5;

% System Dynamics --------------------------------------------------------

% sampling time

dt = 0.015;

fun = @(x,u) cstrDiscr(x,u,dt);

sysDisc = nonlinearSysDT(’stirredTankReactor’,fun,0.015);

% Reachability Analysis ---------------------------------------------------

tic

R = reach(sysDisc,params,options);

tComp = toc;

disp("Computation time: " + tComp);

% Simulation --------------------------------------------------------------

simOpt.points = 100;

simOpt.fracVert = 0.5;

simOpt.fracInpVert = 0.5;

139



9 EXAMPLES

simOpt.nrConstInp = 3;

simRes = simulateRandom(sysDisc, params, simOpt);

% Visualization -----------------------------------------------------------

figure; hold on; box on;

% plot initial set

plot(params.R0,[1,2],’FaceColor’,[.8 .8 .8]);

% plot reachable set

plot(R,[1 2],’FaceColor’,[.8 .8 .8]);

% plot simulation

plot(simRes,[1,2],’.k’);

% formatting

xlabel(’T-T_0’);

ylabel(’C-C_0’);

The reachable set and the simulation are displayed in Fig. 48 for a time horizon of tf = 0.15
min.

-0.16 -0.14 -0.12 -0.1 -0.08 -0.06 -0.04

T-T
0

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

C
-C

0

Figure 48: Illustration of the reachable set of the nonlinear discrete-time example. The black
dots show the simulated points.

9.3.6 Nonlinear Differential-Algebraic Systems

CORA is also capable of computing reachable sets for semi-explicit, index-1 differential-algebraic
equations. Although many index-1 differential-algebraic equations can be transformed into an
ordinary differential equation, this is not always possible. For instance, power systems cannot be
simplified due to Kirchhoff’s law which constraints the currents of a node to sum up to zero. The
capabilities of computing reachable sets are demonstrated for a small power system consisting
of three buses. More complicated examples can be found in [59,84,85].
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The MATLAB code that implements the simulation and reachability analysis of the nonlinear
differential-algebraic example is (see file examples/contDynamics/nonlinDASys/
example nonlinearDA reach 01 powerSystem 3bus.m in the CORA toolbox):

% Parameter ---------------------------------------------------------------

nrOfConstr = 6;

params.tFinal = 5;

x0 = [380; 0.7];

params.y0guess = [ones(0.5*nrOfConstr, 1); zeros(0.5*nrOfConstr, 1)];

params.R0 = zonotope([x0,diag([0.1, 0.01])]);

params.U = zonotope([[1; 0.4],diag([0, 0.04])]);

% Reachability Settings ---------------------------------------------------

options.timeStep = 0.05;

options.taylorTerms = 6;

options.zonotopeOrder = 200;

options.errorOrder = 1.5;

options.tensorOrder = 2;

options.maxError = [0.5; 0];

options.maxError_x = options.maxError;

options.maxError_y = 0.005*[1; 1; 1; 1; 1; 1];

% System Dynamics ---------------------------------------------------------

powerDyn = nonlinDASys(@bus3Dyn,@bus3Con);

% Reachability Analysis ---------------------------------------------------

tic

R = reach(powerDyn, params, options);

tComp = toc;

disp([’computation time of reachable set: ’,num2str(tComp)]);

% Simulation --------------------------------------------------------------

simOpt.points = 60;

simOpt.fracVert = 0.5;

simOpt.fracInpVert = 0.5;

simOpt.nrConstInp = 6;

simRes = simulateRandom(powerDyn, params, simOpt);

% Visualization -----------------------------------------------------------

dim = [1 2];

figure; hold on

% plot reachable sets
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plot(R,dim,’FaceColor’,[.7 .7 .7]);

% plot initial set

plot(params.R0,dim,’k’,’FaceColor’,’w’);

% plot simulation results

plot(simRes,dim);

% label plot

xlabel([’x_{’,num2str(dim(1)),’}’]);

ylabel([’x_{’,num2str(dim(2)),’}’]);

The reachable set and the simulation are plotted in Fig. 49 for a time horizon of tf = 5.
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Figure 49: Illustration of the reachable set of nonlinear differential-algebraic example. The white
box shows the initial set and the black lines show simulated trajectories.

9.4 Hybrid Dynamics

As already described in Sec. 4.3, CORA can compute reachable sets of mixed discrete/contin-
uous or so-called hybrid systems. The difficulty in computing reachable sets of hybrid systems
is the intersection of reachable sets with guard sets and the subsequent enclosure by the used
set representation. As demonstrated in Sec. 4.3.1.1, CORA implements multiple different ap-
proaches for handling intersections with guard sets, some of which are demonstrated by the
examples shown here.

9.4.1 Bouncing Ball Example

We demonstrate the syntax of CORA for the well-known bouncing ball example, see e.g., [86,
Section 2.2.3]. Given is a ball in Fig. 50 with dynamics s̈ = −g, where s is the vertical position
and g is the gravity constant. After impact with the ground at s = 0, the velocity changes
to v′ = −αv (v = ṡ) with α ∈ [0, 1]. The corresponding hybrid automaton can be formalized
according to Sec. 4.3 as
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s0

v0

g

HA = (L1)

L1 = (f1(·),S1, (T1))

f1(x, u) =

[

x2

−g

]

, g = 9.81

S1 =
{

[x1 x2]
T ∈ R2

∣

∣

∣
x2 ≥ 0

}

T1 = (G1, r1(·), 1)

G1 =
{

[x1 x2]
T ∈ R2

∣

∣

∣
x1 = 0, x2 ≤ 0

}

r(x) =

[

x1

−αx2

]

, α = 0.75

Figure 50: Example for a hybrid system: bouncing ball.

The MATLAB code that implements the simulation and reachability analysis of the bouncing
ball example is (see file examples/hybridDynamics/hybridAutomaton/
example hybrid reach 01 bouncingBall.m in the CORA toolbox):

% Parameter ---------------------------------------------------------------

% problem description

params.R0 = zonotope([1;0],diag([0.05,0.05])); % initial set

params.startLoc = 1; % initial location

params.tFinal = 1.7; % final time

% Reachability Options ----------------------------------------------------

% settings for continuous reachability

options.timeStep = 0.05;

options.taylorTerms = 10;

options.zonotopeOrder = 20;

% settings for hybrid systems

options.guardIntersect = ’polytope’;

options.enclose = {’box’};

% Hybrid Automaton --------------------------------------------------------

% continuous dynamics

A = [0 1; 0 0];

B = [0; 0];

c = [0; -9.81];

linSys = linearSys(’linearSys’,A,B,c);

% system parameters

alpha = -0.75; % rebound factor

% invariant set

inv = mptPolytope([-1,0],0);

% guard sets
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guard = conHyperplane([1,0],0,[0,1],0);

% reset function

reset.A = [0, 0; 0, alpha]; reset.b = zeros(2,1);

% transitions

trans{1} = transition(guard,reset,1);

% location object

loc{1} = location(’loc1’,inv,trans,linSys);

% hybrid automata

HA = hybridAutomaton(loc);

% Reachability Analysis ---------------------------------------------------

tic;

R = reach(HA,params,options);

tComp = toc;

disp([’Computation time for reachable set: ’,num2str(tComp),’ s’]);

% Simulation --------------------------------------------------------------

% settings for random simulation

simOpt.points = 10; % number of initial points

simOpt.fracVert = 0.5; % fraction of vertices initial set

simOpt.fracInpVert = 0.5; % fraction of vertices input set

simOpt.inpChanges = 10; % changes of input over time horizon

% random simulation

simRes = simulateRandom(HA,params,simOpt);

% Visualization -----------------------------------------------------------

figure; hold on

% plot reachable set

plot(R,[1,2],’b’);

% plot initial set

plot(params.R0,[1,2],’k’,’FaceColor’,’w’);

% plot simulated trajectories

plot(simRes,[1,2]);

axis([0,1.2,-6,4]);

The reachable set and the simulation are plotted in Fig. 51 for a time horizon of tf = 1.7.
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Figure 51: Illustration of the reachable set of the bouncing ball. The black box shows the initial
set and the black line shows the simulated trajectory.

9.4.2 Powertrain Example

The powertrain example is taken out of [62, Sec. 6], which models the powertrain of a car
with backlash. To investigate the scalability of the approach, one can add further rotating
masses, similarly to adding further tanks for the tank example. Since the code of the powertrain
example is rather lengthy, we are not presenting it in the manual; the interested reader can
look it up in the example folder of the CORA code. The reachable set and the simulation are
plotted in Fig. 52 for a time horizon of tf = 2. The corresponding code can be found in the
file examples/hybridDynamics/hybridAutomaton/ example hybrid reach 02 powerTrain.m in the
CORA toolbox.
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Figure 52: Illustration of the reachable set of the bouncing ball. The black box shows the initial
set and the black line shows the simulated trajectory.
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10 Conclusions

CORA is a toolbox for the implementation of prototype reachability analysis algorithms in
MATLAB. The software is modular and is organized into four main categories: vector set
representations, matrix set representations, continuous dynamics, and hybrid dynamics. CORA
includes novel algorithms for reachability analysis of nonlinear systems and hybrid systems with
a special focus on scalability; for instance, a power network with more than 50 continuous state
variables has been verified in [85]. The efficiency of the algorithms used means it is even possible
to verify problems online, i.e., while they are in operation [82].

One particularly useful feature of CORA is its adaptability: the algorithms can be tailored to
the reachability analysis problem in question. Forthcoming integration into SpaceEx, which has
a user interface and a model editor, should go some way towards making CORA more accessible
to non-experts.
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A Additional Methods for Set Representations

In addition to the set operations described in Sec. 2.1, some set representations implement
additional methods. This section documents most of the implemented methods and explains
optional parameters for some methods.

A.1 Zonotopes

In addition to the standard set operations described in Sec. 2.1 and the methods for converting
between set operations (see Tab. 5), the class zonotope supports the following methods:

• abs – returns a zonotope with absolute values of the center and the generators

• box – computes an enclosing axis-aligned box in generator representation.

• constrSat – checks if all values of a zonotope satisfy the constraint Cx <= d, C ∈ Rm×n,
d ∈ Rm.

• deleteAligned – combines aligned generators to a single generator. This reduces the
order of a zonotope while not causing any over-approximation.

• deleteZeros – deletes generators whose entries are all zero.

• dominantDirections - computes the directions that span a parallelotope which tightly
encloses a zonotope.

• encloseMany – function for the enclosure of multiple zonotopes with a zonotope.

• enlarge – enlarges the generators of a zonotope by a vector of factors for each dimension.

• exactPlus – compute the addition of two sets while preserving the dependencies between
the two sets.

• filterOut – deletes parallelotopes that are covered by other parallelotopes from a list of
parallelotopes

• generatorLength – returns the lengths of the generators.

• generators – returns the generators of a zonotope as a matrix whose column vectors are
the generators.

• halfspace – generates halfspace representation of the zonotope.

• intervalMultiplication – multiplication of a zonotope with an interval (automatically
called via mtimes)

• intersectStrip – encloses the intersection between a zonotope and a strip with a zono-
tope.

• isInterval – checks if a zonotope represents an interval.

• minnorm – returns the minimum zonotope norm.

• minus – approximates the Minkowski difference of two zonotopes or a zonotope and a
vector.

• norm – computes the maximum norm value of all points in a zonotope. For more detail,
see Sec. A.1.2.

• orthVectors – computes remaining orthogonal vectors when the zonotope is not full
dimensional.
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• polygon – converts a two-dimensional zonotope into a polygon and returns its vertices.

• projectHighDim – project a zonotope to a higher dimensional space.

• quadMap parallel – parallel execution of quadMap-operation for zonotopes, see Sec. 2.1.1.5.

• radius – computes the radius of a hypersphere enclosing a zonotope.

• rank – computes the rank of the generator matrix.

• reduceUnterApprox – computes a zonotope with desired zonotope order which is a subset
of the original zonotope.

• rotate – rotates a 2-dimensional zonotope by the specified angle.

• sampleBox – returns specified number of samples uniformly distributed in a full-dimensional
parallelotope.

• split – splits a zonotope into two or more zonotopes that enclose the original zonotope.
More details can be found in Sec. A.1.1.

• splitFirstGen – split a zonotope along the first generator.

• tensorMultiplication – computes Mijk...lxjxk · · · xl|x ∈ Z for a zonotope Z and a tensor
M .

• underapproximate – returns the vertices of an under-approximation. The under-approximation
is computed by finding the vertices that are extreme in the direction of a set of vectors,
stored in the matrix S. If S is not specified, it is constructed by the vectors spanning an
over-approximative parallelotope. (Warning: high computational complexity).

• volumeRatio – computes the approximate volume ratio of a zonotope and its over-approximating
polytope

• zonotopeNorm – computes the norm of a point with respect to the zonotope-norm induced
by the zonotope

A.1.1 Method split

The ultimate goal is to compute the reachable set of a single point in time or time interval
with a single set representation. However, reachability analysis often requires abstractions of
the original dynamics, which might become inaccurate for large reachable sets. In that event
it can be useful to split the reachable set and continue with two or more set representations
for the same point in time or time interval. Zonotopes are not closed under intersection, and
thus not under splits. Several options as listed in Table 25 can be selected to optimize the split
performance.

Table 25: Split techniques for zonotopes.

split technique comment literature

splitOneGen splits one generator [25, Proposition 3.8]
directionSplit splits all generators in one direction —
directionSplitBundle exact split using zonotope bundles [34, Section V.A]
halfspaceSplit split along a given halfspace —

A.1.2 Method norm

This function can compute the Euclidean norm of the zonotope vertex with the biggest Euclidean
distance from the center (without enumerating vertices). Although this problem has exponential
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worst-case complexity in the number of generators, by using a more advanced branch-and-bound
solver like Gurobi35 with YALMIP, the computation time can be reduced significantly.

A.1.3 Method ellipsoid

Table 26 shows available conversions from a zonotope Z to an ellipsoid E. Results specified (o:
overapproximation, u: underapproximation)

• by o:exact, u:exact are the optimal minimum-volume enclosing and maximum-volume
inscribed ellipsoids. For more detail, see [87, Sec. 8.4.1, Sec. 8.4.2].

• by o:norm,u:norm approximate o:exact,u:exact by using the exact zonotope norm.

• by o:norm:bnd, u:norm:bnd are the same as their respective *:norm specifier, but use a
tractably computable bound on the zonotope norm.

Table 26: Available zonotope → ellipsoid conversions with “+”, “−” meaning polynomial and
exponential complexity with respect to generator count, respectively.

Specifier Mode Complexity

o:exact o −
o:norm o −
o:norm:bnd o +
u:exact u −
u:norm u −
u:norm:bnd u +

A.2 Intervals

In addition to the standard set operations described in Sec. 2.1 and the methods for converting
between set operations (see Tab. 5) the class interval supports additional mehtods. Since the
interval class has a lot of methods, we separate them into methods that realize mathematical
functions and methods that do not realize mathematical functions.

Methods realizing mathematical functions and operations

• abs – returns the absolute value as defined in [5, Eq. (10)].

• acos – arccos(·) function as defined in [5, Eq. (6)].

• acosh – arccosh(·) function as defined in [5, Eq. (8)].

• asin – arcsin(·) function as defined in [5, Eq. (6)].

• asinh – arcsinh(·) function as defined in [5, Eq. (8)].

• atan – arctan(·) function as defined in [5, Eq. (6)].

• atanh – arctanh(·) function as defined in [5, Eq. (8)].

• cos – cos(·) function as defined in [5, Eq. (13)].

• cosh – cosh(·) function as defined in [5, Eq. (7)].

• ctranspose – overloaded ’ ’ ’ operator for single operand to transpose a matrix.

• enlarge – enlarges each dimension by a factor around its mean value.

35https://www.gurobi.com/
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• eq – overloads the ’==’ operator to check if both intervals are equal.

• exp – exponential function as defined in [5, Eq. (4)].

• horzcat – overloads horizontal concatenation.

• infimum – returns the infimum.

• isscalar – returns true if the interval is one-dimensional, false otherwise.

• le – overloads <= operator: Is one interval equal or the subset of another interval?

• log – natural logarithm function as defined in [5, Eq. (5)].

• lt – overloads < operator: Is one interval equal or the subset of another interval?

• minus – overloaded ’-’ operator, see [5, Eq. (2)].

• mpower – overloaded ’ˆ’ operator (power), see [5, Eq. (9)].

• mrdivide – overloaded ’/’ operator (division), see [5, Eq. (3)].

• mtimes – overloaded ’*’ operator (multiplication), see [5, Eq. (2)] for scalars and [5,
Eq. (16)] for matrices.

• ne – overloaded ’ =’ operator.

• power – overloaded ’.ˆ’ operator for intervals (power), see [5, Eq. (9)].

• prod – product of array elements.

• rdivide – overloads the ’./’ operator: provides elementwise division of two matrices.

• sin – sin(·) function as defined in [5, Eq. (12)].

• sinh – sinh(·) function as defined in [5, Eq. (7)].

• sqrt –
√

(·) function as defined in [5, Eq. (5)].

• tan – tan(·) function as defined in [5, Eq. (14)].

• tanh – tanh(·) function as defined in [5, Eq. (7)].

• times – overloaded ’.*’ operator for elementwise multiplication of matrices.

• transpose – overloads the ’ .’ ’ operator to compute the transpose of an interval matrix.

• uminus – overloaded ’-’ operator for a single operand.

• uplus – overloaded ’+’ operator for single operand.

Other methods

• diag – create diagonal matrix or get diagonal elements of matrix.

• enlarge – enlarges an interval object around its center.

• gridPoints – computes grid points of an interval; the points are generated in a way such
that a continuous space is uniformly partitioned.

• horzcat – overloads the operator for horizontal concatenation, e.g., a = [b,c,d].

• infimum – returns the infimum of an interval.

• isscalar – returns 1 if interval is scalar and 0 otherwise.

• length – overloads the operator that returns the length of the longest array dimension.
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• partition – partitions a multidimensional interval into subintervals.

• rad – returns the radius (= 0.5·width) of an interval.

• radius – computes the radius of a hypersphere enclosing an interval.

• reshape – overloads the operator ’reshape’ for reshaping matrices.

• size – overloads the operator that returns the size of the object, i.e., length of an array
in each dimension.

• split – splits an interval in one dimension.

• subsasgn – overloads the operator that assigns elements of an interval matrix I, e.g.,
I(1,2)=value, where the element of the first row and second column is set.

• subsref – overloads the operator that selects elements of an interval matrix I, e.g.,
value=I(1,2), where the element of the first row and second column is read.

• sum – overloaded ’sum()’ operator for intervals.

• supremum – returns the supremum of an interval.

• vertcat – overloads the operator for vertical concatenation, e.g., a = [b;c;d].

A.3 Ellipsoids

In addition to the standard set operations described in Sec. 2.1 and the methods for converting
between set operations (see Tab. 5) the class ellipsoid supports the following methods:

• distance – computes the smallest euclidean distance between an ellipsoid and another set
representation.

• enlarge – enlarges the ellipsoid by a scalar factor for each dimension.

• eq – overloads the ’==’ operator to check if two ellipsoids are equal.

• intersectStrip – computes the intersection of a ellipsoid and a list of strips.

• minus – computes the Minkowski difference as defined in [27].

• radius – returns the radius of the smallest hyper-sphere which contains a given ellipsoid

• rank – returns the rank of an ellipsoid

A.3.1 Method plus

In [27, Sec. 2.2.2], an approach to compute an ellipsoidal overapproximation of the Minkowski
sum of two n-dimensional ellipsoids is provided. The method plus (overwriting +) uses this
approach to compute the resulting ellipsoid for 2n roughly uniformly sampled unit directions,
intersect all of the resulting ellipsoids and calculate the intersection overapproximation using
and.

However, since in many cases, one can often find a direction such that the result in that direction
has a smaller volume than on average, we also support an overloaded method and(E1,E2,L)

which allows to specify custom direction(s).

A.3.2 Method zonotope

In [88], inner and outer approximations for both ellipsoids and zonotopes are presented. Table
27 shows these conversions from an ellipsoid E to a zonotope Z where m is the user-specified
number of generators. Results specified (o: outer approximation, i: inner approximation)
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• by o:box,u:box are the optimal minimum-volume and maximum-volume parallelotopes,

• by o:norm,u:norm approximate Z arbitrarily closely for arbitrary m using the exact zono-
tope norm,

• by o:norm:bnd, u:norm:bnd are the same as their respective *:norm specifier, but use a
tractably computable bound on the zonotope norm.

Table 27: Available ellipsoid → zonotope conversions with “+”, “−” meaning polynomial and
exponential complexity with respect to dimension, respectively.

Specifier Mode Complexity

o:box o +
o:norm o −
o:norm:bnd o +
i:box i +
i:norm i −
i:norm:bnd i +

A.3.3 Method distance

Computes the euclidean distance between the second argument S and the ellipsoid E, where
distance(E,S)> 0 means the two objects do not intersect. For distance(E,S)= 0, S and E

either touch or intersect. For S being a hyperplane, distance(E,S)= 0 means S and E touch,
and distance(E,S)< 0 represents a real intersection.

A.4 MPT Polytopes

In addition to the standard set operations described in Sec. 2.1 and the methods for converting
between set operations (see Tab. 5), the class mptPolytope supports the following methods:

• eq – overloads the ’==’ operator to check if two polytopes are equal.

• eventFcn – event function that detects is a trajectory enters the set. This function is
required for the simulation of hybrid systems (see Appendix C).

• halfspace – computes the halfspace representation of the polytope.

• hausdorffDist – ???

• isConHyperplane – check if the polytope can be equivalently represented as a constrained
hyperplane (see Sec. 2.2.2.1).

• le – overloads the ’<=’ operator; returns 1 if one polytopes is equal or enclosed by the
other one and 0 otherwise.

• minus – overloaded ’-’ operator for the subtraction of a vector from an mptPolytope or
the Minkowski difference between two mptPolytope objects.

• mldivide – computes the set difference P1 \ P2 such that P2 is subtracted from P1.

• projectHighDim – projects a polytope to a higher-dimensional space.

• removeRedundancies – removes redundant halfspaces.

• removedHalfspaces – compares to polytopes, checks which halfspaces have been removed.
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A.5 Polynomial Zonotopes

In addition to the standard set operations described in Sec. 2.1 and the methods for converting
between set operations (see Tab. 5), the class polyZonotope supports the following methods:

• approxVolumeRatio – computes the approximate ratio of the volumes between the depen-
dent generator and the independent generator part of the polynomial zonotope.

• compact – removes redundancies in the representation of the polynomial zonotope.

• containsPointSet – checks if a point set is fully enclosed by a tight over-approximation
of a polynomial zonotope.

• deleteZeros – deletes all generators of length 0.

• exactPlus – compute the addition of two sets while preserving the dependencies between
the two sets.

• fhandle – computes a function handle based on the given polynomial zonotope.

• getSubset – extracts a subset by specifying new ranges for the factors.

• hausdorffDist – calculates an approximation of the Hausdorff distance between a poly-
nomial zonotope and a point cloud.

• hessianHandle – computes a function handle which returns the hessian matrix at the
given point.

• innerApprox – returns an inner-approximation of a polynomial zonotope with a union of
zonotopes.

• isInterval – checks if a polynomial zonotope represents an interval.

• isPolytope – checks if a polynomial zonotope represents a polytope.

• isZero – check for each dimension if polynomial zonotope is equal to zero.

• isZonotope – checks if a polynomial zonotope represents a zonotope.

• jacobian – computes the derivatives of a given polynomial zonotope.

• jacobianHandle – computes a function handle which calculates the jacobian matrix at a
given point.

• noIndep – remove the independent generators from a polynomial zonotope.

• onlyId – returns a polynomial zonotope with only specified ids as well as the remaining
polynomial zonotope.

• partZonotope – computes a zonotope over-approximation in the specified id entries only.

• plotRandPoint – plots a point cloud of random points inside a polynomial zonotope.

• polygon – creates a polygon enclosure of a two-dimensional polynomial zonotope.

• replaceId – replaces specified id entries with others.

• resolve – replaces specified id entries with given numerical values for corresponding de-
pendent factors.

• restoreId – adds (if not alreay there) specified ids
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• restructure – Calculate a new over-approxmiating representation of a polynomial zono-
tope in such a way that there remain no independent generators. More information can
be found in Sec. 6.4.

• split – splits a polynomial zonotope into two or more polynomial zonotopes that enclose
the original polynomial zonotope.

• splitDepFactor – splits one dependent factor of a polynomial zonotope.

• splitLongestGen – splits the longest generator dependent generator with a polynomial
order of 1 for a polynomial zonotope.

• stack – extends dimensionality with provided polynomial zonotopes while preserving de-
pendencies.

• subs – computes the functional composition of two polynomial zonotopes.

• sum – computes the sum of multiple polynomial zonotopes.

A.5.1 Method jacobian

For a n-dimensional polynomial zonotope pZ with N dependent factors, jacobian(pZ) returns
a N -dimensional cell array where each element is the respective derivative of pZ with dimension
n.

A.5.2 Method jacobianHandle

For a n-dimensional polynomial zonotope pZ, where id contains some (in any order) or all ids of
pZ, jacobianHandle(pZ,id) returns a function handle of the form @(x,p)H(x,p). This handle
returns the corresponding jacobian matrix of size n by numel(id) at x, p, where x are treated
as variables, and p as parameters.

Accepts symbolic vectors for x and p.

A.5.3 Method hessianHandle

For a 1D polynomial zonotope pZ, where id contains some (in any order) or all ids of pZ,
hessianHandle(pZ,id) returns a function handle of the form @(x,p)H(x,p). This handle
returns the corresponding square, symmetric hessian matrix of size numel(id) by numel(id) at
x and p, where x are treated as variables, and p as parameters.

Accepts symbolic vectors for x and p.

A.6 Capsule

In addition to the standard set operations described in Sec. 2.1 and the methods for converting
between set operations (see Tab. 5), the class capsule supports the following methods:

• enlarge – enlarges the capsule around its center.

• polygon – under-approximates a two-dimensional capsule by a polygon and returns its
vertices. This function is mainly used for plotting.

• radius – returns the radius of the enclosing hyperball.

A.7 Zonotope Bundles

In addition to the standard set operations described in Sec. 2.1 and the methods for converting
between set operations (see Tab. 5), the class zonoBundle supports the following methods:
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• encloseTight – generates a zonotope bundle that encloses two zonotopes bundles in a
possibly tighter way than enclose as outlined in [34, Sec. VI.A].

• enlarge – enlarges the generators of each zonotope in the bundle by a vector of factors
for each dimension.

• reduceCombined – reduces the order of a zonotope bundle by not reducing each zonotope
separately as in reduce, but in a combined fashion.

• replace – replaces a zonotope at an index position by another zonotope.

• shrink – shrinks the size of individual zonotopes by explicitly computing the intersection
of individual zonotopes; however, in total, the size of the zonotope bundle will increase.
This step is important when individual zonotopes are large, but the zonotope bundles
represents a small set. In this setting, the over-approximations of some operations, such
as mtimes might become too over-approximative. Although shrink initially increases the
size of the zonotope bundle, subsequent operations are less over-approximative since the
individual zonotopes have been shrunk.

• split – splits a zonotope bundle into two or more zonotopes bundles. Other than for
zonotopes, the split is exact. The method can split halfway in a particular direction or
given a separating hyperplane.

A.8 Constrained Zonotopes

In addition to the standard set operations described in Sec. 2.1 and the methods for converting
between set operations (see Tab. 5), the class conZonotope supports the following methods:

• conIntersect – add the constraint that the linear transformation of a constrained zono-
tope intersects another constrained zonotope

• deleteZeros – deletes generators whose entries are all zero.

• intersectStrip – computes the intersection of a constrained zonotope and a list of strips.

• intervalMultiplication – computes the multiplication of an interval with a constrained
zonotope, this function is called by the function mtimes.

• minus – computes the Minkowski difference of two constrained zonotopes.

• plotZono – plots a two-dimensional projection of the conZonotope object together with
the corresponding zonotope.

• reduceConstraints – reduces the number of constraints of a constrained zonotope.

• rescale – prune the domain of the zonotope factors βi by adequate adaption of the
zonotope generators. More details can be found in [26].

• split – splits a constrained zonotope into two or more constrained zonotopes that enclose
the original constrained zonotope.

A.8.1 Method reduce

One parameter to describe the complexity of a constrained zonotope is the degrees-of-freedom
order oc = (p−q)/n, where p represents the number of generators, q is the number of constraints
and n is the state space dimension. The method reduce implements the two options reduction
of the number of constraints q [26, Section 4.2] and reduction of the degrees-of-freedom order
oc [26, Section 4.3].
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A.9 Probabilistic Zonotopes

In addition to the standard set operations described in Sec. 2.1 and the methods for converting
between set operations (see Tab. 5), the class probZonotope supports the following methods:

• abs – returns a probabilistic zonotope with absolute values of the center and the interval
generator vectors.

• enclosingPolytope – converts the mean of a probabilistic zonotope to a polytope repre-
sentation.

• enclosingProbability – computes values to plot the mesh of a two-dimensional projec-
tion of the enclosing probability hull.

• generators – returns the generator matrix of a probabilistic zonotope using its covariance
matrix Sigma.

• max – computes an over-approximation of the maximum on the m-sigma bound according
to [35, Equation 3].

• mean – returns the uncertain mean of a probabilistic zonotope.

• probReduce – reduces the number of single Gaussian distributions to the dimension of the
state space.

• pyramid – encloses a probabilistic zonotope Z by a pyramid with step sizes defined by an
array of confidence bounds and determines the probability of intersection with a polytope
P as described in [35, Section VI.C].

• reduce – returns an over-approximating zonotope with fewer generators. The zonotope of
the uncertain mean Z is reduced as detailed in Sec. ??, while the order reduction of the
probabilistic part is done by the method probReduce.

• sigma – returns the Σ matrix of a probabilistic zonotope.

• singleGenPlot – plots a two-dimensional projection of a probabilistic zonotope with a
maximum of 5 generators.

• sup – returns the supremum by || · ||∞ of the probabilistic zonotope.

A.10 Constrained Hyperplane

In addition to the methods described in Sec. 2.1, we support the following methods for the class
conHyperplane:

• distance – computes the distance from a constrained hyperplane to a given set.

• isHyperplane – checks whether a constrained hyperplane can be represented as a simple
hyperplane.

• projectHighDim – projects a constrained hyperplane to a higher-dimensional space.

• projectOnHyperplane – orthogonal projection of a set onto the constrained hyperplane.

A.10.1 Method plot

Since constrained hyperplanes can in general be unbounded, it is impossible to plot the whole
hyperplane. When plotting a constrained hyperplane, we therefore first extract the area of the
state space that is shown in the current plot, and then plot the inersection between this area
and the constrained hyperplane. Consequently, it is important to first define the desired area of
the plot using MATLABs xlim and ylim functions before the constrained hyperplane is plotted.
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Furthermore, the projection of a constrained hyperplane on two dimensions usually fills the
whole space and is therefore not very interesting. Instead of plotting the real projection, we
therefore set all states that do not belong to the current projection equal to 0 and then plot the
resulting set, which is a hyperplane in 2D.

A.11 Halfspace

In addition to the methods described in Sec. 2.1 we support the following methods for the class
halfspace:

• commonPoint – finds a common point of two halfspaces.

• projectHighDim – projects a halfspace to a higher-dimensional space.

• rotate – rotates a halfspace around a rotation point until the normal vector is aligned
with a desired direction.

A.11.1 Method plot

Since halfspaces are unbounded, it is impossible to plot the whole halfspace. When plotting a
halfspace we therefore first extract the area of the state space that is shown in the current plot,
and then plot the inersection between this area and the halfspace. Consequently, it is important
to first define the desired area of the plot using MATLABs xlim and ylim functions before the
halfspace is plotted.

Furthermore, the projection of a halfspace on two dimensions usually fills the whole space and
is therefore not very interesting. Instead of plotting the real projection, we set all states that
do not belong to the current projection equal to 0 and then plot the resulting set which is a
halfspace in 2D.

A.12 Level Sets

In addition to the methods described in Sec. 2.1, we support the following methods for the class
levelSet:

• eventFcn – event function that detects is a trajectory enters the set. This function is
required for the simulation of hybrid systems (see Appendix C).

• tightenDomain – contracts the interval domain for the intersection between a level set
and another set.

A.12.1 Method plot

Since level sets can in general be unbounded, it is often impossible to plot the whole level set.
When plotting a level set we therefore first extract the area of the state space that is shown in the
current plot, and then plot the intersection between this area and the level set. Consequently, it
is important to first define the desired area of the plot using MATLABs xlim and ylim functions
before the level set is plotted.

Furthermore, the projection of a level set on two dimensions usually fills the whole space and is
therefore not very interesting. Instead of plotting the real projection, we set all states that do
not belong to the current projection equal to 0 and then plot the resulting set which is a level
set in 2D.
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A.13 Taylor Models

Since this class has a lot of methods, we separate them into methods that realize mathematical
functions and methods that do not realize mathematical functions.

Methods realizing mathematical functions and operations

• acos – arccos(·) function as defined in [6, Eq. (31)].

• asin – arcsin(·) function as defined in [6, Eq. (30)].

• atan – arctan(·) function as defined in [6, Eq. (32)].

• cos – cos(·) function as defined in [6, Eq. (25)].

• cosh – cosh(·)function as defined in [6, Eq. (28)].

• det – determinant of a Taylor model matrix.

• exp – exponential function as defined in [6, Eq. (21)].

• log – natural logarithm function as defined in [6, Eq. (22)].

• minus – overloaded ’-’ operator, see [6, Eq. (7)].

• mpower – overloaded ’ˆ’ operator (power).

• mrdivide – overloaded ’/’ operator (division), see [6, Eq. (9)].

• power – overloaded ’.ˆ’ operator (elementwise power).

• rdivide – overloads the ’./’ operator: provides elementwise division of two matrices.

• reexpand – re-expand the Taylor model at a new expansion point.

• sin – sin(·) function as defined in [6, Eq. (24)].

• sinh – sinh(·) function as defined in [6, Eq. (27)].

• sqrt –
√

(·) function as defined in [6, Eq. (23)].

• tan – tan(·) function as defined in [6, Eq. (26)].

• tanh – tanh(·) function as defined in [6, Eq. (29)].

• times – overloaded ’.*’ operator for elementwise multiplication of matrices.

• trace – trace of a Taylor model matrix.

• uminus – overloaded ’-’ operator for a single operand.

• uplus – overloaded ’+’ operator for a single operand.

Other methods

• getCoef – returns the array of polynomial coefficients of a taylm object.

• getRem – returns the interval part of a taylm object.

• getSyms – returns the polynomial part of a taylm object as a symbolic expression.

• optBernstein – range bounding using Bernstein polynomials.

• optBnb – implementation of the branch and bound algorithm as presented in [6, Sec. 2.3.2].
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• optBnbAdv – implementation of the advanced branch and bound algorithm as presented
in [6, Sec. 2.3.2].

• optLinQuad – implementation of the algorithm based on LDB and QFB as presented
in [6, Sec. 2.3.3].

• prod – product of array elements.

• set – set the additional class parameters (see [6, Sec. 4.3]).

• setName – set the names of the variables in taylm.

• subsasgn – overloads the operator that assigns elements of a taylm matrix I, e.g., I(1,2)
= value, where the element of the first row and second column is set.

• subsref – overloads the operator that selects elements of a taylm matrix I, e.g., value =

I(1,2), where the element of the first row and second column is read.

A.13.1 Creating Taylor Models

Here we describe the different ways to create an object of class taylm. To make use of cancellation
effects, we have to provide names for variables in order to recognize identical variables; this is
different from implementations of interval arithmetic, where each variable is treated individually.
We have realized three primal ways to generate a matrix containing Taylor models.

Method 1: Composition from scalar Taylor models.

The first possibility is to generate scalar Taylor models from intervals as shown subsequently.

1 a1 = interval(-1, 2); % generate a scalar interval [-1,2]

2 b1 = taylm(a1, 6); % generate a scalar Taylor model of order 6

3 a2 = interval(2, 3); % generate a scalar interval [2,3]

4 b2 = taylm(a2, 6); % generate a scalar Taylor model of order 6

5 c = [b1; b2] % generate a row of Taylor models

When a scalar Taylor model is generated from a scalar interval, the name of the variable is
deduced from the name of the interval. If one wishes to overwrite the name of a variable a2 to
c, one can use the command taylm(a2, 6, {’c’}).

Method 2: Converting an interval matrix.

One can also first generate an interval matrix, i.e., a matrix containing intervals, and then
convert the interval matrix into a Taylor model. The subsequent example generates the same
Taylor model as in the previous example.

1 a = interval([-1;2], [2;3]); % generate an interval vector [[-1,2]; [2,3]]

2 c = taylm(a, 6, {’a1’;’a2’}) % generate Taylor model (order 6)

Note that the cell for naming variables {’a1’;’a2’} has to have the same dimensions as the
interval matrix a. If no names are provided, default names are automatically generated.

Method 3: Symbolic expressions.

We also provide the possibility to create a Taylor model from a symbolic expression.

1 syms a1 a2; % instantiate symbolic variables

2 s = [2 + 1.5*a1; 2.75 + 0.25*a2]; % create symbolic function
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3 c = taylm(s, interval([-2;-3],[0;1]), 6) % generate Taylor model

This method does not require naming variables since variable names are taken from the variable
names of the symbolic expression. The interval of possible values has to be specified after the
symbolic expression s; here: [[−2, 0] [−3, 1]]T .

All examples generate a row vector c. Since all variables are normalized to the range [−1, 1], we
obtain

c =

[
0.5 + 1.5 · ã1 + [0, 0]
2.5 + 0.5 · ã2 + [0, 0]

]
.

The following workspace output of MATLAB demonstrates how the dependency problem is
considered by keeping track of all encountered variables:

>> c(1) + c(1)

ans =

1.0 + 3.0*a1 + [0.00000,0.00000]

>> c(1) + c(2)

ans =

3.0 + 1.5*a1 + 0.5*a2 + [0.00000,0.00000]

B Additional Methods for Matrix Set Representations

In addition to the set operations described in Sec. 3.1 and the methods for converting between
set operations (see Tab. 5), all matrix set representations implement additional methods, which
are documented subsequently.

B.1 Matrix Polytopes

We support the following additional methods for matrix polytopes:

• expmInd – operator for the exponential matrix of a matrix polytope, evaluated indepen-
dently.

• expmIndMixed – operator for the exponential matrix of a matrix polytope, evaluated in-
dependently. Higher order terms are computed via interval arithmetic.

• mpower – overloaded ’∧’ operator for the power of matrix polytopes.

• plot – plots 2-dimensional projection of a matrix polytope.

• simplePlus – computes the Minkowski addition of two matrix polytopes without reducing
the vertices by a convex hull computation.

B.2 Matrix Zonotopes

We support the following additional methods for matrix zonotopes:

• concatenate – concatenates the center and all generators of two matrix zonotopes.

• dependentTerms – considers dependency in the computation of Taylor terms for the matrix
zonotope exponential according to [79, Proposition 4.3].

• expmInd – operator for the exponential matrix of a matrix zonotope, evaluated indepen-
dently.
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• expmIndMixed – operator for the exponential matrix of a matrix zonotope, evaluated
independently. Higher order terms are computed via interval arithmetic.

• expmMixed – operator for the exponential matrix of a matrix zonotope, evaluated depen-
dently. Higher order terms are computed via interval arithmetic as discussed in [79, Section
4.4.4].

• expmOneParam – operator for the exponential matrix of a matrix zonotope when only one
parameter is uncertain as described in [81, Theorem 1].

• mpower – overloaded ’∧’ operator for the power of matrix zonotopes.

• norm – computes exactly the maximum norm value of all possible matrices.

• plot – plots 2-dimensional projection of a matrix zonotope.

• powers – computes the powers of a matrix zonotope up to a certain order.

• randomSampling – creates random samples within a matrix zonotope.

• reduce – reduces the order of a matrix zonotope. This is done by converting the matrix
zonotope to a zonotope, reducing the zonotope, and converting the result back to a matrix
zonotope.

• subsref – overloads the operator that selects elements of a matZonotope.

• volume – computes the volume of a matrix zonotope by computing the volume of the
corresponding zonotope.

• zonotope – converts a matrix zonotope into a zonotope.

B.3 Interval Matrices

We support the following additional methods for interval matrices:

• abs – returns the absolute value bound of an interval matrix.

• dependentTerms – considers dependency in the computation of Taylor terms for the in-
terval matrix exponential according to [79, Proposition 4.4].

• exactSquare – computes the exact square of an interval matrix.

• expmAbsoluteBound – returns the over-approximation of the absolute bound of the sym-
metric solution of the computation of the exponential matrix.

• expmInd – operator for the exponential matrix of an interval matrix, evaluated indepen-
dently.

• expmIndMixed – dummy function for interval matrices.

• expmMixed – dummy function for interval matrices.

• expmNormInf – returns the over-approximation of the norm of the difference between
the interval matrix exponential and the exponential from the center matrix according
to [79, Theorem 4.2].

• exponentialRemainder – returns the remainder of the exponential matrix according to
[79, Proposition 4.1].

• interval – converts an interval matrix to an interval.

• mpower – overloaded ’∧’ operator for the power of interval matrices.
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• mtimes – standard method, see Sec. 3.1.1 for numeric matrix multiplication or a multipli-
cation with another interval matrix according to [79, Equation 4.11].

• norm – computes exactly the maximum norm value of all possible matrices.

• plot – plots 2-dimensional projection of an interval matrix.

• powers – computes the powers of an interval matrix up to a certain order.

• randomIntervalMatrix – generates a random interval matrix with a specified center and
a specified delta matrix or scalar. The number of elements of that matrix which are
uncertain has to be specified, too.

• randomSampling – creates random samples within a matrix zonotope.

• subsref – overloads the operator that selects elements.

• volume – computes the volume of an interval matrix by computing the volume of the
corresponding interval.

C Simulation of Hybrid Automata

While the reachable set computation of hybrid systems as performed in CORA is described in
several publications, see e.g., [25,60,62], the simulation of hybrid systems is nowhere documented.
For this reason, the simulation is described in this subsection in more detail. The simulation is
performed by applying the following steps:

➀ Preparation 1: Guard sets and invariants can be specified by any set representation that
CORA offers. For simulation purposes, all set representations are transformed into a
halfspace representation as illustrated in Fig. 3(b). This is performed by transforming
intervals, zonotopes, and zonotope bundles to a polytope, see Tab. 5. Next, of all polytopes
the halfspace generation is obtained. Guards that are already defined as halfspaces do not
have to be converted, of course. In the end, one obtains a set of halfspaces for guard sets
and the invariant for each location. The result for one location is shown in Fig. 53.

➁ Preparation 2: The ordinary differential equation (ODE) solvers of MATLAB can be
connected to so-called event functions. If during the simulation, one of the event functions
has a zero crossing, MATLAB stops the simulation and goes forward and backward in
time in an iterative way to determine the zero crossing up to some numerical precision.
It can be set if the ODE solver should react to a zero crossing when the event function
changes from negative to positive (direction=+1), the other way round (direction=-1),
or in any direction (direction=0). It can also be set if the simulation should stop after a
zero crossing or not.

CORA automatically generates an event function for each halfspace, where the simulation
is stopped when the halfspace of the invariant is left (direction=+1) and stopped for
halfspaces of guard sets when the halfspace is entered (direction=-1). In any case, the
simulation will stop.

➂ During the simulation, the integration of the ODE stops as soon as any event function is
triggered. This, however, does not necessarily mean that a guard set is hit as shown in
Fig. 53(b). Only when the state is on the edge of a guard set, the integration is stopped
for the current location. Otherwise, the integration is continued. Please note that it is
not sufficient to check whether a state during the simulation enters a guard set, since this
could cause missing a guard set as shown in Fig. 54.
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➃ After a guard set is hit, the discrete state changes according to the transition function and
the continuous state according to the jump function as described above. Currently, only
urgent semantics is implemented in CORA, i.e., a transition is taken as soon as a guard
set is hit, although the guard might model non-deterministic switching. The simulation
continues with step ➂ in the next location until the time horizon is reached.

x1

x2

invariant

guard set

(a) Considered location.

x1

x2

initial state

first halfspace hit (not in guard set)

second halfspace hit (in guard set)

halfspace of guard set:

halfspace of invariant:

part belonging to halfspace

(b) Simulation using halfspaces.

Figure 53: Illustration of the algorithm for simulating a hybrid automaton.

D Implementation of Loading SpaceEx Models

This section describes the implementation details of the spaceex2cora converter. We will first
briefly describe the SpaceEx format in Sec. D.1, followed by an overview of the conversion in
Sec. D.2. Details of the conversion are presented in Sec. D.3 and D.4.

D.1 The SpaceEx Format

The SpaceEx format [78] has similarities to statecharts [89]. A SpaceEx model is composed of
network and base components. Base components resemble XOR states in statecharts, which in
essence describe a monolithic hybrid automaton (see Sec. 4.3) of which not all components have
to be specified, e.g., one does not have to specify a flow function if a base component is a static
controller. Analogously to XOR states, only one base component can be active at the same
time. Network components resemble AND states of statecharts and bind base components. As
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x1

x2

invariant

guard set

initial state

intermediate states

Figure 54: Guard intersections can be missed when one only checks whether intermediate states
are in any guard set.

in AND states of statecharts, several base components can be active at the same time. SpaceEx
models can be seen as a tree of components, where base components are the leaves and the root
of the tree defines the interface (i.e., states & inputs) of the complete model consisting of all
components.

When a component is bound by a network component, all variables of the bound component
(states, inputs, constant parameters) must be mapped to variables of the binding component or
to numerical values. If a component is bound multiple times, each bind creates a new instance
of that component with independent variables. This makes it convenient to reuse existing model
structures, e.g., when one requires several heaters in a building, but the dynamics of each heater
has the same structure but different parameters.

The SpaceEx modeling language is described in greater detail on the SpaceEx website36.

D.2 Overview of the Conversion

The conversion of SpaceEx models to CORA models is achieved in two phases. In the first
phase, the XML structure is parsed and a MATLAB struct of the model is generated. This is
realized in the converter function spaceex2cora.m when it calls

structHA = SX2structHA(’model.xml’,’mainComponent’)

returning the MATLAB structure structHA. The optional second argument specifies the highest-
ranking network component, from which the model is loaded. In XML files containing just one
model that is always the last defined component (default component). Please note that the
function SX2structHA has verbose output. Please check any warnings issued, as they might
indicate an incomplete conversion. For details see the restrictions mentioned in Sec. 7.2.

In the second phase, the computed structHA is used to create a MATLAB function that when
executed instantiates the CORA model. This MATLAB function is created by

StructHA2file(structHA,’myModel’,’my/cora/files’).

Calling myModel() instantiates the CORA model converted from the original SpaceEx model;
this is demonstrated for a bouncing ball example in Sec. 7.2.

D.3 Parsing the SpaceEx Components (Phase 1)

Parsing the SpaceEx components is performed in five steps:

1. Accessing XML files (Sec. D.3.1);

2. Parsing component templates (Sec. D.3.2);

36http://spaceex.imag.fr/sites/default/files/spaceex modeling language 0.pdf
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3. Building component instances (Sec. D.3.3);

4. Merging component instances (Sec. D.3.4);

5. Conversion to state-space form (Sec. D.3.5).

These steps are described in detail subsequently.

D.3.1 Accessing XML Files

We use the popular function xml2struct (Falkena, Wanner, Smirnov) from the MATLAB File
Exchange to conveniently analyze XML files. The function converts XML structures such as

<mynode id=”1” note=”foobar”>
<foo>FOO</foo>
<bar>BAR</bar>

</mynode>

to a nested MATLAB struct:

MATLAB struct

mynode

Attributes

id: ’1’
description: ’foobar’

foo

Text: ’FOO’

bar

Text: ’BAR’

The resulting MATLAB struct realizes an intuitive access to attributes and an easy extraction
of sub-nodes in MATLAB.

D.3.2 Parsing Component Templates

Before we begin with the semantic evaluation, base components and network components are
parsed into a more convenient format.

Base components

For base components we convert equations stored as strings specifying flow, invariants, guards,
and resets, to a more compact and manipulatable format. Furthermore, we split the global list
of transitions to individual lists for each location of outgoing transitions.

Flow or reset functions are provided in SpaceEx as a list of equations separated by ampersands,
as demonstrated in the subsequent example taken from the platoon hybrid model:

<f low>
x1 ’ == x2 &
x2 ’ == −x3 + u &
x3 ’ == 1.605∗ x1 + 4.868∗ x2 −3.5754∗x3 −0.8198∗x4 + 0.427∗ x5 −

0.045∗ x6 − 0.1942∗ x7 + 0.3626∗ x8 − 0.0946∗ x9 &
x4 ’ == x5 &
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x5 ’ == x3 − x6 &
x6 ’ == 0.8718∗ x1 + 3.814∗ x2 −0.0754∗x3 + 1.1936∗ x4 + 3.6258∗ x5 −

3.2396∗ x6 − 0.595∗ x7+ 0.1294∗ x8 −0.0796∗x9 &
x7 ’ == x8 &
x8 ’ == x6 − x9 &
x9 ’ == 0.7132∗ x1 + 3.573∗ x2 − 0.0964∗ x3 + 0.8472∗ x4 + 3.2568∗ x5 −

0.0876∗ x6 + 1.2726∗ x7 + 3.072∗ x8 − 3.1356∗ x9 &
t ’ == 1

</f low>

We separate the equations and represent each one as a tuple of the left-hand side variable name
and the right-hand side expression. Variable names are stored as MATLAB strings, while the
right-hand-side expressions are stored as symbolic expressions of the Symbolic Math Toolbox. The
Symbolic Math Toolbox also provides powerful manipulation tools such as variable substitution
(command subs), which are heavily used during the conversion process. The result of the above
example is the following struct (symbolic expressions are indicated by curly brackets):

Flow

varNames: [ ”x1” ”x2” ”x3” ”x4” ”x5” ”x6” ”x7” ”x8” ”x9” ”t” ]
expressions: [ {x2} {−x3 + u} . . . {1} ]

Invariant and guard sets are similarly defined by a list of equations or inequalities:

<i nvar i an t>
t <= 20 &
min <= u <= max

</invar i an t>

For invariants and guard sets, we convert both sides of each equation or inequality to symbolic
expressions. The left side is subtracted by the right side of the equations/inequalities to receive
expressions of the form expr ≤ 0 or expr = 0. The result of the above example is

Invariant

inequalities: [ {t− 20} {min − u} {u−max} ]
equalities: [ ]

As a result, base components are reformatted into the format shown in Fig. 55.

Network components

For network components we need to parse the references to other components and perform a
variable mapping for each referenced component. Analogously to differential equations in base
components, variable mappings in network components are stored using strings and symbolic
expressions. We also parse the variables of all components and store their attributes. Please note
that label-variables are currently ignored, since synchronization label logic is not yet implemented
in CORA.

As a result, network components are reformatted into the format shown in Fig. 56.

While loading models with variables named i, j, I or J, we discovered that our string to sym-
bolic parser (str2sym) automatically replaces them by the constant

√
−1 since MATLAB inter-

prets those as the imaginary unit. As a workaround, we pre-parse all our equations and variable
definitions to rename those variables. All names fulfilling the regular expression i+|j+|I+|J+

are lengthened by a letter. The Symbolic Math Toolbox can also substitute other common
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id
listOfVar(i)
States(i)

name
Flow
Invariant
Trans(i)

destination
guard
reset

Figure 55: Parsed base component template (indexed fields indicate struct arrays).

id
listOfVar(i)
Binds(i)

id
keys
values
values text

Figure 56: Parsed network component template (indexed fields indicate struct arrays).

constants such as pi, but does not do so while parsing. It is still recommended to avoid them
as variable names.

D.3.3 Building Component Instances

In the next step, we build the component tree, which represents the hierarchy of all network and
base components. An example that demonstrates this process is shown in Fig. 57. The result
from the previous conversion step is a list of network and base component templates, where
the connections between the list elements are represented as references (binds) between these
component templates. To build the component tree, we start from the root component and
resolve all of the references to other components. This process is repeated recursively until all
leafs of the tree consist of base components, which per definition do not contain any references
to other components.

Each time we resolve a reference, we create a base or network component instance from the
corresponding template. Note that it is possible that templates are referenced multiple times.
In order to create an instance, we have to replace the variable names in the template with the
variable names that the parent component specifies for this reference. If the template represents
a base component, we rename the variables in the flow function as well as in the equations for
the invariant set, the guard sets and the reset functions. Otherwise, if the template represents
a network component, we rename the corresponding variables in the outgoing references of the
component. Once the component tree is completely build, all instances in the tree use only
variables that are defined in the root component, which is crucial for the operations performed
in that step.
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Figure 57: Example for the composition of the component tree. The red nodes represent Network
components (NC) and the blue nodes base components (BC). Dashed arrows depict references,
while solid arrows represent instantiations.

D.3.4 Merging Component Instances

In the component tree that was created in the conversion step, each base component instance
defines the system dynamics for a subset of the system states. The state vector for the overall
system therefore represents a concatenation of the states from the different base component
instances. For the component tree that is shown in Fig. 57, the state vector could for example
look as follows:

~x = (x1, x2︸ ︷︷ ︸
BC1(1)

, x3, x4︸ ︷︷ ︸
BC1(2)

, x5, x6︸ ︷︷ ︸
BC1(3)

, x7, x8, x9︸ ︷︷ ︸
BC2(1)

)T (43)

The component tree therefore represents the overall system as a Compositional Hybrid Au-
tomaton. At this point, there exist two different options for the further conversion: Since the
2018 release, CORA provides the class parallelHybridAutomaton for the efficient storage and
analysis of Compositional Hybrid Automata (see Sec. 4.3.2). So the SpaceEx model can either
be converted to a parallelHybridAutomaton object, or to a flat hybrid automaton represented
as a hybridAutomaton object. In the second case, we have to perform the automaton product,
which is shortly described in the remainder of this section.

We have implemented the parallel composition for two base components, which can be applied
iteratively to compose a flat hybrid automaton from all components. The product of two in-
stances with discrete state sets S1 and S2 has the state set S1 × S2. Thus, we have to compute
a new representation for the combined states {(s1, s2)|s1 ∈ S1, s2 ∈ S2} by combining flow
functions, invariants, and transitions. A detailed description of the automaton product and the
required operations is provided in [90, Chapter 5] as well as in [65, Def. 2.9].

D.3.5 Conversion to State-Space Form

Once the composed automaton has been created, we have to convert the descriptions of flow
functions, invariant sets, guard sets, and reset functions to a format that can be directly used
to create the corresponding CORA objects in the second phase of the conversion process. Sub-
sequently, we describe the required operations for the different parts.
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Flow Functions

Depending of the type of the flow function, we create different CORA objects. Currently, the
converter supports the creation of linearSys objects for linear flow functions and nonlinearSys

objects for nonlinear flow functions. We plan to also include linear as well as nonlinear systems
with constant parameters in the future. Up to now, we stored the flow functions as general
nonlinear symbolic equations of the form ẋ = f(x, u) in the corresponding base components. If
the flow function is linear, we have to represent it in the form ẋ = Ax + Bu+ c in order to be
able to construct the linearSys object later on. The coefficients for the matrices A ∈ Rn×n and
B ∈ Rn×m can be obtained from the symbolic expressions by computing their partial derivatives:

aij =
∂fi(x, u)

∂xj

bij =
∂fi(x, u)

∂uj

We compute the partial derivatives with the jacobian command from MATLAB’s Symbolic
Math Toolbox. The constant part c ∈ Rn can be easily obtained by substituting all variables
with 0:

ci = fi(0, 0)

These computations can also be used to check the linearity of a flow function: If the function is
linear, then all partial derivatives have to be constant. If a flow fails the linearity test, we create
a nonlinearSys object instead of a linearSys object. This requires the flow equation to be
stored in a MATLAB function, which we can easily create by converting symbolic expressions
to strings.

Reset Functions

Analogously to linear flow functions, reset functions r(x) are evaluated to obtain the form
r(x) = Ax+ b. A failure of the linearity test causes an error here, since CORA currently does
not support nonlinear reset functions.

Guard Sets and Invariant Sets

The SpaceEx modeling language uses polyhedra for continuous sets. CORA can store polyhedra
with the class mptPolytope, which is based on the Polyhedron class of the Multi-Parametric
Toolbox 3 for MATLAB37.

Polyhedra can be specified by the coefficients C ∈ Rp×n, d ∈ Rp, Ce ∈ Rq×n, and de ∈ Rq

forming the equation system Cx ≤ d ∧ Cex = de. We previously stored guards and invariants
as symbolic expressions expr ≤ 0 or expr = 0. As for flow functions, the coefficients of Cx ≤ d
and Cex = de are obtained via partial derivatives and insertion of zeros. Nonlinearity causes an
error, since only linear sets are supported by CORA.

D.4 Creating the CORA model (Phase 2)

In the second phase of the conversion, we generate a MATLAB function that creates a
hybridAutomaton or parallelHybridAutomaton MATLAB object from the parsed SpaceEx
model. This function has an identical name as that of the SpaceExModel and is created in
/models/SpaceExConverted/.

37people.ee.ethz.ch/ mpt/3/
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In order to interpret the CORA model in state-space form, each model function starts with an
interface specification, presenting which entry of a state or input vector corresponds to which
variable in the SpaceEx model. Please find below the example of a chaser spacecraft:

%% In t e r f a c e S p e c i f i c a t i o n :
% This s e c t i on c l a r i f i e s the meaning o f s t a t e & input dimensions
% by showing t h e i r mapping to SpaceEx v a r i a b l e names .

% Component 1 ( ChaserSpacecraf t ) :
% s t a t e x := [ x ; y ; vx ; vy ; t ]
% input u := [uDummy]

It is worth noting that CORA does not support zero-input automata. For this reason, we have
added a dummy input in the example above.

D.5 Open Problems

The spaceex2cora converter has already been used in previous ARCH friendly competitions.
However, its development is far from being finished. We suggest addressing the following issues
in the future:

• Input constraints: Input constraints are specified in the SpaceEx format as a part of
the invariant set. The input constraints for the converted CORA model should therefore
be automatically extracted from the SpaceEx model.

• Uncertain parameters: Uncertain system parameters are currently converted to uncer-
tain system inputs for the CORA model. In the future we plan to automatically create
linParamSys or nonlinParamSys objects if uncertain system parameters are present.

E Licensing

CORA is released under the GPLv3.

F Disclaimer

The toolbox is primarily for research. We do not guarantee that the code is bug-free.

One needs expert knowledge to obtain optimal results. This tool is prototypical and not all
parameters for reachability analysis are automatically set. Not all functions that exist in the
software package are explained. Reasons could be that they are experimental or designed for
special applications that address a limited audience.

If you have questions or suggestions, please contact us through www.in.tum.de/i06.

G Contributors

All people that have contributed so far are listed in alphabetical order of the last name in Tab.
28. The table further shows the number of files for each of the different CORA modules that an
author contributed to.
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Matthias Althoff - 190 223 7 94 60 44 18 63 41 159
Niklas Kochdumper 1 40 270 7 1 65 123 30 3 31 89
Mark Wetzlinger - 55 87 6 - 19 89 15 - 23 238
Victor Gaßmann 1 1 109 - - 4 13 - 3 - 82
Dmitry Grebenyuk - - 67 - - - - - - - 69
Tobias Ladner - 4 2 - - 16 64 - - - 25
Maximilian Perschl - - 2 4 - - - 4 - - 9
Aaron Pereira - - - - 7 - - - - - 7
Farah Atour - - - 11 - - - - - - -
Adrian Kulmburg - - 4 - - - - - - - 6
Johann Schöpfer - - - 2 - - - 8 - - -
Ahmed El-Guindy - - - - - 3 - - - 6 -
Mingrui Wang - - 6 - - - 3 - - - -
Ivan Brkan - - - - - - - - 6 - -
Philipp Gassert - - - 1 - 3 - - - - -
Carlos Valero - 1 1 - - 2 - - - - -
Zhuoling Li - - - - - - 3 - - - -
Raja Judeh - - - - - - - - - - 3
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Amr Alanwar - - 2 - - - - - - - -
Anna Kopetzki - - 2 - - - - - - - -
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Daniel Heß - - 1 - - - - - - - -
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