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Abstract

The philosophy, architecture, and capabilities of the COntinuous Reachability Analyzer
(CORA) are presented. CORA is a toolbox that integrates various vector and matrix set
representations and operations on these set representations as well as reachability algorithms
of various dynamic system classes. The software is designed such that set representations
can be exchanged without having to modify the code for reachability analysis. CORA has a
modular design, making it possible to use the capabilities of the various set representations
for other purposes besides reachability analysis. The toolbox is designed using the object
oriented paradigm, such that users can safely use methods without concerning themselves
with detailed information hidden inside the object. Since the toolbox is written in MATLAB,
the installation and use is platform independent. CORA is released under the GPLv3.
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2 PHILOSOPHY AND ARCHITECTURE

1 What’s new compared to CORA 2016?

It is our pleasure to present many new features for CORA 2018. The subsequent list is non-
exhaustive and unsorted:

• Reading SpaceEx format: One can now read SpaceEx models (see Sec. 14), which have
become the quasi-standard for formal verification tools of hybrid systems. This also has
the advantage that one can use the SpaceEx model editor1 for modeling hybrid systems.

• Parallel hybrid automata: It is infeasible to model larger hybrid systems using a single
hybrid automaton. It is now possible to specify parallel hybrid automata so that it is no
longer required to model a system by a single hybrid automaton. For analysis purposes,
we assemble the dynamics of parallel hybrid automata on-the-fly as described e.g., in [1].

• New zonotope reduction methods: New methods for the order reduction of zonotopes
presented in [2] are now available in CORA.

• Lazy symbolic computations: CORA performs symbolic computations for nonlinear
systems, e.g., to linearize them for various linearization points. These computations used
to be performed for each reachability analysis. Now these time-consuming computations
are only performed if the model files are changed or options concerning the symbolic
computations are modified.

• Taylor models: In our new version, we have realized a class to compute with Taylor
models as described in [3].

• Affine arithmetic: As a byproduct of the Taylor model implementation, we have also
implemented an affine arithmetic when the number of noise terms does not exceed the
system dimension, see [3, Sec. 3].

• Constrained zonotope: This new set representation from [4] is as general as polytopes,
but makes it possible to use lazy computations.

• Discrete time models: It is now possible to compute reachable sets of discrete time
models; see Sec. 9.5. We have not implemented a class for linear discrete time models,
since this is too trivial.

• More compact implementation: We have integrated the class linVarSys into the class
linParamSys. Also, we have unified all symbolic computations, which are now inherited
from all other classes for continuous dynamics.

• Miscellaneous: There are many other interesting improvements: Better organization of
models (now under /models), directly changing parameters for nonlinear systems during
reachability analysis, better controlling simplifications of symbolic expressions, more unit
tests, vector and matrix norms for vector and matrix sets, extending linear systems to
affine systems ẋ = Ax+Bu+ c, etc.

2 Philosophy and Architecture

TheCOntinuousReachability Analyzer (CORA)2 is a MATLAB toolbox for prototypical design
of algorithms for reachability analysis. The toolbox is designed for various kinds of systems with
purely continuous dynamics (linear systems, nonlinear systems, differential-algebraic systems,

1spaceex.imag.fr/download-6
2https://www6.in.tum.de/Main/SoftwareCORA
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3 INSTALLATION

parameter-varying systems, etc.) and hybrid dynamics combining the aforementioned continuous
dynamics with discrete dynamics. Let us denote the continuous part of the solution of a hybrid
system for a given initial discrete state by χ(t;x0, u(·), p), where t ∈ R is the time, x0 ∈ Rn is
the continuous initial state, u(t) ∈ Rm is the system input at t, u(·) is the input trajectory, and
p ∈ Rp is a parameter vector. The continuous reachable set at time t = r can be defined for a
set of initial states X0, a set of input values U(t), and a set of parameter values P, as

Re(r) =
{

χ(r;x0, u(·), p) ∈ Rn
∣
∣x0 ∈ X0,∀t : u(t) ∈ U(t), p ∈ P

}

.

CORA solely supports over-approximative computation of reachable sets since (a) exact reach-
able sets cannot be computed for most system classes [5] and (b) over-approximative computa-
tions qualify for formal verification. Thus, CORA computes over-approximations for particular
points in time R(t) ⊇ Re(t) and for time intervals: R([t0, tf ]) =

⋃

t∈[t0,tf ]
R(t).

CORA enables one to construct one’s own reachable set computation in a relatively short amount
of time. This is achieved by the following design choices:

• CORA is built for MATLAB, which is a script-based programming environment. Since the
code does not have to be compiled, one can stop the program at any time and directly see
the current values of variables. This makes it especially easy to understand the workings
of the code and to debug new code.

• CORA is an object-oriented toolbox that uses modularity, operator overloading, inheri-
tance, and information hiding. One can safely use existing classes and just adapt classes
one is interested in without redesigning the whole code. Operator overloading makes it
possible to write formulas that look almost identical to the ones derived in scientific papers
and thus reduce programming errors. Most of the information for each class is hidden and
is not relevant to users of the toolbox. Most classes use identical methods so that set
representations and dynamic systems can be effortlessly replaced.

• CORA interfaces with the established toolbox MPT3, which is also written in MATLAB.
Results of CORA can be easily transferred to this toolbox and vice versa. We are currently
supporting version 2 and 3 of the MPT.

Of course, it is also possible to use CORA as it is to conduct reachability analysis.

Please be aware of the fact that outcomes of reachability analysis heavily depend on the
chosen parameters for the analysis (those parameters are listed in Sec. 12). Improper choice
of parameters can result in an unacceptable over-approximation although reasonable results
could be achieved by using appropriate parameters. Thus, self-tuning of the parameters for
reachability analysis is investigated as part of future work.

Since this manual focuses on the presentation of the capabilities of CORA, no other tools for
reachability analysis of continuous and hybrid systems are reviewed. A list of related tools is
presented in [3, 6, 7].

3 Installation

The software does not require any installation, except that the path for CORA has to be set
in MATLAB. Besides CORA, the MPT toolbox has to be downloaded and included in the
MATLAB path: http://people.ee.ethz.ch/~mpt/3/. If the new installation routine of the

3http://control.ee.ethz.ch/~mpt/2/
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6 ARCHITECTURE

MPT is used, it is no longer required to manually include MPT in the MATLAB path. MPT
is designed for parametric optimization, computational geometry and model predictive control.
CORA only uses the computational geometry capabilities for polytopes.

CORA also requires the symbolic math toolbox in MATLAB.

To check whether you correctly included all files in the MATLAB path, type runTestSuite in
the MATLAB workspace to run all unit tests (see Sec. 13).

4 Connections to and from SpaceEx

As part of the EU project Unifying Control and Verification of Cyber-Physical Systems (Un-
CoVerCPS) the tools CORA and SpaceEx [8] have been integrated to a certain extent.

Importing SpaceEx Models CORA can now read SpaceEx models as described in Sec. 14.
This has two major benefits: First, SpaceEx has become the quasi-standard for model exchange
between tools for the formal verification of hybrid systems (see ARCH friendly competition in
Sec. 5) so that many model files in this format are available. Second, there exists a graphical
model editor for Space Ex models briefly presented in Sec. 14.1 helping non-experts to model
hybrid systems more easily.

CORA/SX CORA code for computing reachable sets of nonlinear systems is now available in
the SpaceEx extension CORA/SX as C++ code. CORA has several implementations to compute
reachable sets of nonlinear systems—in the first CORA/SX version, the most basic, but very
efficient algorithm from [9] has been implemented. Also, the zonotope class from CORA is now
available in CORA/SX, making efficient computations for switched linear systems possible as
described in [10].

5 CORA@ARCH

CORA has participated in the ARCH4 friendly competitions since the first competition in 2017.
Results of the competition can be found in the yearly ARCH proceedings [11,12]. In particular,
CORA has participated in the linear systems category [13,14] and the nonlinear systems category
[15,16]; CORA/SX has participated in the same categories in 2018 [14,16].

All results from all tools participating in the friendly competitions can be re-computed using
the ARCH repeatability packages, which are publicly available:
gitlab.com/goranf/ARCH-COMP/.

More information on the ARCH workshops can be found here: cps-vo.org/group/ARCH.

6 Architecture

The architecture of CORA can essentially be grouped into the parts presented in Fig. 1 using
UML5: Classes for set representations (Sec. 7), classes for matrix set representations (Sec.

4Applied Verification for Continuous and Hybrid Systems
5http://www.uml.org/
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6 ARCHITECTURE

contDynamics

linearSys (Sec. 9.1)

linParamSys (Sec. 9.2)

linProbSys (Sec. 9.3)

nonlinearSys (Sec. 9.4)

nonlinearSysDT (Sec. 9.5)

nonlinParamSys (Sec. 9.6)

nonlinDASys (Sec. 9.7)

transition (Sec. 10.4)

location (Sec. 10.3)

hybridAutomaton (Sec. 10.2)

parallelHybridAutomaton (Sec. 10.5)

partition (Sec. 11.1)

markovchain (Sec. 11.2)

matrixSet

matPolytope (Sec. 8.1)

matZonotope (Sec. 8.2)

intervalMatrix (Sec. 8.3)

zonotope (Sec. 7.1)

zonotopeBundle (Sec. 7.2)

quadZonotope (Sec. 7.3)

probZonotope (Sec. 7.4)

conZonotope (Sec. 7.5)

mptPolytope (Sec. 7.6)

interval (Sec. 7.7)

taylm (Sec. 7.8)

affine (Sec. 7.9)

zoo (Sec. 7.10)

vertices (Sec. 7.11)

contSet

Generalization

Composition

Required interface

Participating interface
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Figure 1: Unified Modeling Language (UML) class diagram of CORA.

8), classes for the analysis of continuous dynamics (Sec. 9), classes for the analysis of hybrid
dynamics (Sec. 10), and classes for the abstraction to discrete systems (Sec. 11).

The class diagram in Fig. 1 shows that parallel hybrid automata (class parallelHybridAutomaton)
consist of several instances of hybrid automata (class hybridAutomaton), which in turn consist
of several instances of the location class. Each location object has a continuous dynamics
(classes inheriting from contDynamics), several transitions (class transition), and a set rep-
resentation (classes inheriting from contSet) to describe the invariant of the location. Each
transition has a set representation to describe the guard set enabling a transition to the next
discrete state. More details on the semantics of those components can be found in Sec. 10.
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7 SET REPRESENTATIONS AND OPERATIONS

Note that some classes subsume the functionality of other classes. For instance, nonlinear
differential-algebraic systems (class nonlinDASys) are a generalization of nonlinear systems
(class nonlinearSys). The reason why less general systems are not removed is because very
efficient algorithms exist for those systems that are not applicable to more general systems.

7 Set Representations and Operations

The basis of any efficient reachability analysis is an appropriate set representation. On the one
hand, the set representation should be general enough to describe the reachable sets accurately;
on the other hand, it is crucial that the set representation makes it possible to run efficient
and scalable operations on them. CORA provides a palette of set representations that are
explained in detail throughout this section. Table 1 shows the supported conversions between
the set representations. In order to convert a set, it is sufficient to pass the current set object
to the class constructor of the target set representation, as demonstrated by the following code
example:

1 % create zonotope object

2 zono = zonotope([1 2 1;0 1 -1]);

3

4 % convert to other set representations

5 int = interval(zono); % over-approximation

6 poly = mptPolytope(zono); % exact conversion

Table 1: Set conversions supported by CORA. The row headers represent the original set repre-
sentation and the column headers the target set representation after conversion. The shortcuts
e (exact conversion) and o (over-approximation) are used.

zono zB qZ pZ cZ poly int tay vert

zonotope (zono, Sec. 7.1) - e e e e o e
zonotopeBundle (zB, Sec. 7.2) - e e o e
quadZonotope (qZ, Sec. 7.3) o - o
probZonotope (pZ, Sec. 7.4) o -
conZonotope (cZ, Sec. 7.5) o - e o e
mptPolytope (poly, Sec. 7.6) e - o e
interval (int, Sec. 7.7) e e e - e
taylm (tay, Sec. 7.8) o -
vertices (vert, Sec. 7.11) o o -

Important operations for sets are:

• display: Displays the parameters of the set in the MATLAB workspace.

• plot: Plots a two-dimensional projection of a set in the current MATLAB figure.

• plotFilled: Like plot, but fills the plot with a specified color.

• mtimes: Overloads the ’*’ operator for the multiplication of various objects with a set.
For instance if M is a matrix of proper dimension and Z is a zonotope, M ∗ Z returns the
linear map {Mx|x ∈ Z}.

• plus: Overloads the ’+’ operator for the addition of various objects with a set. For
instance if Z1 and Z2 are zonotopes of proper dimension, Z1+ Z2 returns the Minkowski

8



7 SET REPRESENTATIONS AND OPERATIONS

sum {x+ y|x ∈ Z1, y ∈ Z2}.
• interval: Returns an interval that encloses the set (see Sec. 7.7).

7.1 Zonotopes

A zonotope is a geometric object in Rn. Zonotopes are parameterized by a center c ∈ Rn and
generators g(i) ∈ Rn and defined as

Z =
{

c+

p
∑

i=1

βig
(i)
∣
∣
∣βi ∈ [−1, 1]

}

. (1)

We write in short Z = (c, g(1), . . . , g(p)). A zonotope can be interpreted as the Minkowski
addition of line segments l(i) = [−1, 1]g(i) and is visualized step-by-step in a two-dimensional
vector space in Fig. 2. Zonotopes are a compact way of representing sets in high dimensions.
More importantly, operations required for reachability analysis, such as linear maps M ⊗ Z :=
{Mz|z ∈ Z} (M ∈ Rq×n) and Minkowski addition Z1 ⊕ Z2 := {z1 + z2|z1 ∈ Z1, z2 ∈ Z2} can
be computed efficiently and exactly, and others such as convex hull computation can be tightly
over-approximated [17].

0 1 2

0

1

2

c

l(1)

(a) c⊕ l(1)
−1 0 1 2 3

−1

0

1

2

3

c

l(1) l(2)

(b) c⊕ l(1) ⊕ l(2)
−2 0 2 4

−1

0

1

2

3

c

l(1) l(2)

l(3)

(c) c⊕ . . .⊕ l(3)

Figure 2: Step-by-step construction of a zonotope.

We support the following methods for zonotopes:

• box – computes an enclosing axis-aligned box in generator representation.

• cartesianProduct – returns the Cartesian product of two zonotopes.

• center – returns the center of the zonotope.

• constrSat – checks if all values of a zonotope satisfy the constraint Cx <= d, C ∈ Rm×n,
d ∈ Rm.

• containsPoint – determines if a point is inside a zonotope.

• conZonotope – converts a zonotope object into a constrained zonotope object.

• deleteAligned – combines aligned generators to a single generator. This reduces the
order of a zonotope while not causing any over-approximation.

• deleteZeros – deletes generators whose entries are all zero.

• dim – returns the dimension of a zonotope in the sense that the rank of the generator
matrix is computed.

• display – standard method, see Sec. 7.

• enclose – generates a zonotope that encloses two zonotopes of equal dimension according
to [18, Equation 2.2 + subsequent extension].
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7 SET REPRESENTATIONS AND OPERATIONS

• enclosingPolytope – converts a zonotope to a polytope representation in an over-approximative
way to save computational time. The technique can be influenced by options, but most
techniques are inspired by [18, Sec. 2.5.6].

• enlarge – enlarges the generators of a zonotope by a vector of factors for each dimension.

• generators – returns the generators of a zonotope as a matrix whose column vectors are
the generators.

• in – determines if a zonotope is enclosed by another zonotope.

• inParallelotope – checks if a zonotope is a subset of a parallelotope, where the latter is
represented as a zonotope.

• interval – standard method, see Sec. 7. More details can be found in [18, Proposition
2.2].

• isempty – returns 1 if a zonotope is empty and 0 otherwise.

• isIntersecting – determines if a set intersects a zonotope.

• mtimes – standard method, see Sec. 7. More details can be found in Sec. 7.1.1.

• mptPolytope – converts a zontope object into a mptPolytope object.

• norm – computes the maximum norm value of all points in a zonotope.

• plot – standard method, see Sec. 7. More details can be found in Sec. 7.12.

• plotFilled – standard method, see Sec. 7. More details can be found in Sec. 7.12.

• plus – standard method, see Sec. 7. More details can be found in Sec. 7.1.2.

• polygon – converts a two-dimensional zonotope into a polygon and returns its vertices.

• polytope – returns an exact polytope in halfspace representation according to [18, Theo-
rem 2.1].

• project – returns a zonotope, which is the projection of the input argument onto the
specified dimensions.

• quadraticMultiplication – given a zonotope Z and a discrete set of matrices Q(i) ∈
Rn×n for i = 1 . . . n, quadraticMultiplication computes {ϕ|ϕi = xTQ(i)x, x ∈ Z} as
described in [19, Lemma 1].

• quadZonotope – converts a zonotope to a quadZonotope object.

• randPoint – generates a random point within a zonotope.

• randPointExtreme – generates a random extreme point of a zonotope.

• reduce – returns an over-approximating zonotope with fewer generators as detailed in Sec.
7.1.3.

• split – splits a zonotope into two or more zonotopes that enclose the original zonotope.
More details can be found in Sec. 7.1.4.

• underapproximate – returns the vertices of an under-approximation. The under-approximation
is computed by finding the vertices that are extreme in the direction of a set of vectors,
stored in the matrix S. If S is not specified, it is constructed by the vectors spanning an
over-approximative parallelotope.

10
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• vertices – returns a vertices object including all vertices of the zonotope (Warning:
high computational complexity).

• volume – computes the volume of a zonotope according to [20, p.40].

• zonotope – constructor of the class.

7.1.1 Method mtimes

Table 2 lists the classes that can be multiplied with a zonotope. Please note that the order plays
a role and that the zonotope has to be on the right side of the ’*’ operator.

Table 2: Classes that can be multiplied with a zonotope.

class reference literature

MATLAB matrix - -
interval Sec. 7.7 [18, Theorem 3.3]
intervalMatrix Sec. 8.3 [18, Theorem 3.3]
matZonotope Sec. 8.2 [21, Sec. 4.4.1]

7.1.2 Method plus

Table 3 lists the classes that can be added to a zonotope. Unlike with multiplication, the
zonotope can be on both sides of the ’+’ operator.

Table 3: Classes that can be added to a zonotope.

class reference literature

MATLAB vector - -
zonotope Sec. 7.1 [18, Equation 2.1]

7.1.3 Method reduce

The zonotope reduction returns an over-approximating zonotope with fewer generators as de-
scribed in [18, Proposition 2.5]. Table 4 lists some of the implemented reduction techniques.
The standard reduction technique is ’girard’.

Table 4: Reduction techniques for zonotopes.

technique primary use literature

cluster Reduction to low order by clustering generators [2, Sec. III.B]
combastel Reduction of high to medium order [22, Sec. 3.2]
constOpt Reduction to low order by optimization [2, Sec. III.D]
girard Reduction of high to medium order [17, Sec. .4]
methA Reduction to low order by volume minimization (A) Meth. A, [18, Sec. 2.5.5]
methB Reduction to low order by volume minimization (B) Meth. B, [18, Sec. 2.5.5]
methC Reduction to low order by volume minimization (C) Meth. C, [18, Sec. 2.5.5]
pca Reduction of high to medium order using PCA [2, Sec. III.A]

11
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7.1.4 Method split

The ultimate goal is to compute the reachable set of a single point in time or time interval
with a single set representation. However, reachability analysis often requires abstractions of
the original dynamics, which might become inaccurate for large reachable sets. In that event
it can be useful to split the reachable set and continue with two or more set representations
for the same point in time or time interval. Zonotopes are not closed under intersection, and
thus not under splits. Several options as listed in Table 5 can be selected to optimize the split
performance.

Table 5: Split techniques for zonotopes.

split technique comment literature

splitOneGen splits one generator [18, Proposition 3.8]
directionSplit splits all generators in one direction —
directionSplitBundle exact split using zonotope bundles [23, Section V.A]
halfspaceSplit split along a given halfspace —

7.1.5 Zonotope Example

The following MATLAB code demonstrates some of the introduced methods:

1 Z1 = zonotope([1 1 1; 1 -1 1]); % create zonotope Z1

2 Z2 = zonotope([-1 1 0; 1 0 1]); % create zonotope Z2

3 A = [0.5 1; 1 0.5]; % numerical matrix A

4

5 Z3 = Z1 + Z2; % Minkowski addition

6 Z4 = A*Z3; % linear map

7

8 figure; hold on

9 plot(Z1,[1 2],’b’); % plot Z1 in blue

10 plot(Z2,[1 2],’g’); % plot Z2 in green

11 plot(Z3,[1 2],’r’); % plot Z3 in red

12 plot(Z4,[1 2],’k’); % plot Z4 in black

13

14 P = polytope(Z4) % convert to and display halfspace representation

15 I = interval(Z4) % convert to and display interval

16

17 figure; hold on

18 plot(Z4); % plot Z4

19 plot(I,[1 2],’g’); % plot intervalhull in green

This produces the workspace output

Normalized, minimal representation polytope in R^2

H: [8x2 double]

K: [8x1 double]

normal: 1

minrep: 1

xCheb: [2x1 double]

RCheb: 1.4142

[ 0.70711 0.70711] [ 6.364]

[ 0.70711 -0.70711] [ 2.1213]

12
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[ 0.89443 -0.44721] [ 3.3541]

[ 0.44721 -0.89443] [ 2.0125]

[-0.70711 -0.70711] x <= [ 2.1213]

[-0.70711 0.70711] [0.70711]

[-0.89443 0.44721] [0.67082]

[-0.44721 0.89443] [ 2.0125]

Intervals:

[-1.5,5.5]

[-2.5,4.5]

The plots generated in lines 9-12 are shown in Fig. 3 and the ones generated in lines 18-19 are
shown in Fig. 4.
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Figure 3: Zonotopes generated in lines 9-12
of the zonotope example in Sec. 7.1.5.
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Figure 4: Sets generated in lines 18-19 of
the zonotope example in Sec. 7.1.5.

7.2 Zonotope Bundles

A disadvantage of zonotopes is that they are not closed under intersection, i.e., the intersection
of two zonotopes does not return a zonotope in general. In order to overcome this disadvantage,
zonotope bundles are introduced in [23]. Given a finite set of zonotopes Zi, a zonotope bundle is
Z∩ =

⋂s
i=1Zi, i.e., the intersection of zonotopes Zi. Note that the intersection is not computed,

but the zonotopes Zi are stored in a list, which we write as Z∩ = {Z1, . . . ,Zs}∩.
We support the following methods for zonotope bundles:

• and – returns the intersection with a zonotope bundle or a zonotope.

• cartesianProduct – returns the Cartesian product of a zonotope bundle with a zonotope.

• conZonotope – convert a zonotope bundle into a constrained zonotope.

• display – standard method, see Sec. 7.

• enclose – generates a zonotope bundle that encloses two zonotopes bundles of equal
dimension according to [23, Proposition 5].
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• encloseTight – generates a zonotope bundle that encloses two zonotopes bundles in a
possibly tighter way than enclose as outlined in [23, Sec. VI.A].

• enclosingPolytope – returns an over-approximating polytope in halfspace representation.
For each zonotope the method enclosingPolytope of the class zonotope in Sec. 7.1 is
called.

• enlarge – enlarges the generators of each zonotope in the bundle by a vector of factors
for each dimension.

• interval – standard method, see Sec. 7. More details can be found in [23, Proposition
6].

• mtimes – standard method, see Sec. 7. More details can be found in [23, Proposition 1].

• mptPolytope – convert a zonotope bundle into a mptPolytope object.

• plot – standard method, see Sec. 7. More details can be found in Sec. 7.12.

• plotFilled – standard method, see Sec. 7. More details can be found in Sec. 7.12.

• plus – standard method, see Sec. 7. More details can be found in [23, Proposition 2].

• polytope – returns an exact polytope in halfspace representation. Each zonotope is con-
verted to halfspace representation according to [18, Theorem 2.1] and later all obtained H
polytopes are intersected.

• project – returns a zonotope bundle, which is the projection of the input argument onto
the specified dimensions.

• quadraticMultiplication – given a zonotope bundle Z∩ and a discrete set of matrices
Q(i) ∈ Rn×n for i = 1 . . . n, quadraticMultiplication computes {ϕ|ϕi = xTQ(i)x, x ∈
Z∩} as described in [19, Lemma 1].

• randPoint – generates a random point within a zonotope bundle.

• randPointExtreme – generates a random extreme point of a zonotope bundle.

• reduce – returns an over-approximating zonotope bundle with less generators. For each
zonotope the method reduce of the class zonotope in Sec. 7.1 is called.

• reduceCombined – reduces the order of a zonotope bundle by not reducing each zonotope
separately as in reduce, but in a combined fashion.

• shrink – shrinks the size of individual zonotopes by explicitly computing the intersection
of individual zonotopes; however, in total, the size of the zonotope bundle will increase.
This step is important when individual zonotopes are large, but the zonotope bundles
represents a small set. In this setting, the over-approximations of some operations, such
as mtimes might become too over-approximative. Although shrink initially increases the
size of the zonotope bundle, subsequent operations are less over-approximative since the
individual zonotopes have been shrunk.

• split – splits a zonotope bundle into two or more zonotopes bundles. Other than for
zonotopes, the split is exact. The method can split halfway in a particular direction or
given a separating hyperplane.

• vertices – returns potential vertices of a zonotope bundle (WARNING: Do not use this
function for high order zonotope bundles due to high computational complexity).

• volume – computes the volume of a zonotope bundle by converting it to a polytope using
polytope and using a volume computation for polytopes.
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• zonotopeBundle – constructor of the class.

7.2.1 Zonotope Bundle Example

The following MATLAB code demonstrates some of the introduced methods:

1 Z{1} = zonotope([1 1 1; 1 -1 1]); % create zonotope Z1;

2 Z{2} = zonotope([-1 1 0; 1 0 1]); % create zonotope Z2;

3 Zb = zonotopeBundle(Z); % instantiate zonotope bundle from Z1, Z2

4 vol = volume(Zb) % compute and display volume of zonotope bundle

5

6 figure; hold on

7 plot(Z{1}); % plot Z1

8 plot(Z{2}); % plot Z2

9 plotFilled(Zb,[1 2],[.675 .675 .675],’EdgeColor’,’none’); % plot Zb in gray

This produces the workspace output

vol =

1.0000

The plot generated in lines 7-9 is shown in Fig. 5.
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Figure 5: Sets generated in lines 7-9 of the zonotope bundle example in Sec. 7.2.1.

7.3 Polynomial Zonotopes

Zonotopes are a very efficient representation for reachability analysis of linear systems [17] and of
nonlinear systems that can be well abstracted by linear differential inclusions [18]. However, more
advanced techniques, such as in [24], abstract more accurately to nonlinear difference inclusions.
As a consequence, linear maps of reachable sets are replaced by nonlinear maps. Zonotopes are
not closed under nonlinear maps and are not particularly good at over-approximating them. For
this reason, polynomial zonotopes are introduced in [24]. Polynomial zonotopes are a new non-
convex set representation and can be efficiently stored and manipulated. The new representation
shares many similarities with Taylor models [25] (as briefly discussed later) and is a generalization
of zonotopes. Please note that a zonotope cannot be represented by a Taylor model.
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Given a starting point c ∈ Rn, multi-indexed generators f ([i],j,k,...,m) ∈ Rn, and single-indexed
generators g(i) ∈ Rn, a polynomial zonotope is defined as

PZ =
{

c+

p
∑

j=1

βjf
([1],j) +

p
∑

j=1

p
∑

k=j

βjβkf
([2],j,k) + . . .+

p
∑

j=1

p
∑

k=j

. . .

p
∑

m=l

βjβk . . . βm
︸ ︷︷ ︸

η factors

f ([η],j,k,...,m)

+

q
∑

i=1

γig
(i)
∣
∣
∣βi, γi ∈ [−1, 1]

}

. (2)

The scalars βi are called dependent factors, since changing their values does not only affect the
multiplication with one generator, but with other generators too. On the other hand, the scalars
γi only affect the multiplication with one generator, so they are called independent factors. The
number of dependent factors is p, the number of independent factors is q, and the polynomial
order η is the maximum power of the scalar factors βi. The order of a polynomial zonotope is
defined as the number of generators ξ divided by the dimension, which is ρ = ξ

n
. For a concise

notation and later derivations, we introduce the matrices

E[i] = [ f ([i],1,1,...,1)

︸ ︷︷ ︸

=:e([i],1)

. . . f ([i],p,p,...,p)

︸ ︷︷ ︸

=:e([i],p)

] (all indices are the same value),

F [i] = [f ([i],1,1,...,1,2) f ([i],1,1,...,1,3) . . . f ([i],1,1,...,1,p)

f ([i],1,1,...,2,2) f ([i],1,1,...,2,3) . . . f ([i],1,1,...,2,p)

f ([i],1,1,...,3,3) . . .] (not all indices are the same value),

G = [g(1) . . . g(q)],

and E =
[
E[1] . . . E[η]

]
, F =

[
F [2] . . . F [η]

]
(F [i] is only defined for i ≥ 2). Note that the

indices in F [i] are ascending due to the nested summations in (2). In short form, a polynomial
zonotope is written as PZ = (c,E, F,G).

For a given polynomial order i, the total number of generators in E[i] and F [i] is derived using the
number

(
p+i−1

i

)
of combinations of the scalar factors β with replacement (i.e., the same factor

can be used again). Adding the numbers for all polynomial orders and adding the number of
independent generators q, results in ξ =

∑η
i=1

(
p+i−1

i

)
+ q generators, which is in O(pη) with

respect to p. The non-convex shape of a polynomial zonotope with polynomial order 2 is shown
in Fig. 6.
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Figure 6: Over-approximative plot of a polynomial zonotope as specified in the figure. Random
samples of possible values demonstrate the accuracy of the over-approximative plot.

So far, polynomial zonotopes are only implemented up to polynomial order η = 2 so that the
subsequent class is called quadZonotope due to the quadratic polynomial order. We support
the following methods for the quadZonotope class:
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• cartesianProduct – returns the Cartesian product of a quadZonotope and a zonotope.

• center – returns the starting point c.

• display – standard method, see Sec. 7.

• enclose – generates an over-approximative quadZonotope that encloses two quadZonotopes
of equal dimension by first over-approximating them by zonotopes and subsequently ap-
plying enclose of the zonotope class.

• enclosingPolytope – returns an over-approximating polytope in halfspace representa-
tion by first over-approximating by a zonotope object and subsequently applying its
enclosingPolytope method.

• generators – returns the generators of a quadZonotope.

• interval – standard method, see Sec. 7. The interval hull is obtained by over-approximating
the quadZonotope by a zonotope and subsequent application of its interval method.
Other than for the zonotope class, the generated interval hull is not tight in the sense
that it touches the quadZonotope.

• intervalhullAccurate – over-approximates a quadZonotope by a tighter interval hull as
when applying interval. The procedure is based on splitting the quadZonotope in parts
that can be more faithfully over-approximated by interval hulls. The union of the partially
obtained interval hulls constitutes the result.

• mtimes – standard method, see Sec. 7 as stated in [23, Equation 14] for numeric matrix
multiplication. As described in Sec. 7.1.1 the multiplication of interval matrices is also
supported, whereas the implementation for matrix zonotopes is not yet implemented.

• mptPolytope – computes a mptPolytope object that encloses the quadZonotope object.

• plot – standard method, see Sec. 7. More details can be found in Sec. 7.12.

• plotFilled – standard method, see Sec. 7. More details can be found in Sec. 7.12.

• plus – standard method, see Sec. 7. Addition is realized for quadZonotope objects with
MATLAB vectors, zonotope objects, and quadZonotope objects.

• pointSet – computes a user-defined number of random points within the quadZonotope.

• pointSetExtreme – computes a user-defined number of random points when only allowing
the values {−1, 1} for βi, γi (see (2)).

• project – returns a quadZonotope, which is the projection of the input argument onto
the specified dimensions.

• quadraticMultiplication – given a quadZonotopeZ and a discrete set of matrices Q(i) ∈
Rn×n for i = 1 . . . n, quadraticMultiplication computes {ϕ|ϕi = xTQ(i)x, x ∈ Z} as
described in [24, Corollary 1].

• quadZonotope – constructor of the class.

• randPoint – computes a random point within the quadZonotope.

• randPointExtreme – computes a random point when only allowing the values {−1, 1} for
βi, γi (see (2)).

• reduce – returns an over-approximating quadZonotope with less generators as detailed in
Sec. 7.3.1.
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• splitLongestGen – splits the longest generator factor and returns two quadZonotope

objects whose union encloses the original quadZonotope object.

• splitOneGen – splits one generator factor and returns two quadZonotope objects whose
union encloses the original quadZonotope object.

• zonotope – computes an enclosing zonotope as presented in [24, Proposition 1].

7.3.1 Method reduce

The zonotope reduction returns an over-approximating zonotope with less generators. Table 6
lists the implemented reduction techniques.

Table 6: Reduction techniques for zonotopes.

reduction
technique comment literature

girard Only changes independent generators [17, Sec. 3.4]
as for a regular zonotope

redistGirard Combines the techniques girard and redistribute −
redistribute Changes dependent and independent generators [24, Proposition 2]

7.3.2 Polynomial Zonotope Example

The following MATLAB code demonstrates some of the introduced methods:

1 c = [0;0]; % starting point

2 E1 = diag([-1,0.5]); % generators of factors with identical indices

3 E2 = [1 1; 0.5 0.3]; % generators of factors with identical indices

4 F = [-0.5; 1]; % generators of factors with different indices

5 G = [0.3; 0.3]; % independent generators

6

7 qZ = quadZonotope(c,E1,E2,F,G); % instantiate quadratic zonotope

8 Z = zonotope(qZ) % over-approximate by a zonotope

9

10 figure; hold on

11 plot(Z); % plot Z

12 plotFilled(qZ,[1 2],7,[],[.6 .6 .6],’EdgeColor’,’none’); % plot qZ

This produces the workspace output

id: 0

dimension: 2

c:

1.0000

0.4000

g_i:

-1.0000 0 0.5000 0.5000 -0.5000 0.3000

0 0.5000 0.2500 0.1500 1.0000 0.3000

The plot generated in lines 11-12 is shown in Fig. 7.
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Figure 7: Sets generated in lines 11-12 of the polynomial zonotope example in Sec. 7.3.2.

7.4 Probabilistic Zonotopes

Probabilistic zonotopes have been introduced in [26] for stochastic verification. A probabilistic
zonotope has the same structure as a zonotope, except that the values of some βi in (1) are
bounded by the interval [−1, 1], while others are subject to a normal distribution 6. Given
pairwise independent Gaussian distributed random variables N (µ,Σ) with expected value µ
and covariance matrix Σ, one can define a Gaussian zonotope with certain mean:

Zg = c+

q
∑

i=1

N (i)(0, 1) · g(i),

where g(1), . . . , g(q) ∈ Rn are the generators, which are underlined in order to distinguish them
from generators of regular zonotopes. Gaussian zonotopes are denoted by a subscripted g:
Zg = (c, g(1...q)).

A Gaussian zonotope with uncertain mean Z is defined as a Gaussian zonotope Zg, where the
center is uncertain and can have any value within a zonotope Z, which is denoted by

Z := Z ⊞ Zg, Z = (c, g(1...p)), Zg = (0, g(1...q)),

or in short by Z = (c, g(1...p), g(1...q)). If the probabilistic generators can be represented by
the covariance matrix Σ (q > n) as shown in [26, Proposition 1], one can also write Z =
(c, g(1...p),Σ). As Z is neither a set nor a random vector, there does not exist a probability
density function describing Z . However, one can obtain an enclosing probabilistic hull which is
defined as f̄Z (x) = sup

{
fZg(x)

∣
∣E[Zg] ∈ Z

}
, where E[ ] returns the expectation and fZg(x) is

the probability density function (PDF) of Zg. Combinations of sets with random vectors have
also been investigated, e.g., in [27]. Analogously to a zonotope, it is shown in Fig. 8 how the
enclosing probabilistic hull (EPH) of a Gaussian zonotope with two non-probabilistic and two
probabilistic generators is built step-by-step from left to right.

We support the following methods for probabilistic zonotopes:

• center – returns the center of the probabilistic zonotope.

• display – standard method, see Sec. 7.

6Other distributions are conceivable, but not implemented.
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Figure 8: Construction of a probabilistic zonotope.

• enclose – generates a probabilistic zonotope that encloses two probabilistic zonotopes Z ,
A⊗ Z (A ∈ Rn×n) of equal dimension according to [26, Section VI.A].

• enclosingProbability – computes values to plot the mesh of a two-dimensional projec-
tion of the enclosing probability hull.

• max – computes an over-approximation of the maximum on the m-sigma bound according
to [26, Equation 3].

• mean – returns the uncertain mean of a probabilistic zonotope.

• mtimes – standard method, see Sec. 7 as stated in [26, Equation 4] for numeric matrix
multiplication. The multiplication of interval matrices is also supported.

• plot – standard method, see Sec. 7. More details can be found in Sec. 7.12.

• plus – standard method, see Sec. 7. Addition is realized for probZonotope objects
with MATLAB vectors, zonotope objects, and probZonotope objects as described in [26,
Equation 4].

• probReduce – reduces the number of single Gaussian distributions to the dimension of the
state space.

• probZonotope – constructor of the class.

• pyramid – encloses a probabilistic zonotope Z by a pyramid with step sizes defined by an
array of confidence bounds and determines the probability of intersection with a polytope
P as described in [26, Section VI.C].

• reduce – returns an over-approximating zonotope with fewer generators. The zonotope
of the uncertain mean Z is reduced as detailed in Sec. 7.1.3, while the order reduction of
the probabilistic part is done by the method probReduce.

• sigma – returns the Σ matrix of a probabilistic zonotope.

• zonotope – converts a probabilistic zonotope to a common zonotope where for each gen-
erator, a m-sigma interval is taken.

7.4.1 Probabilistic Zonotope Example

The following MATLAB code demonstrates some of the introduced methods:

1 Z1=[10 ; 0 ]; % uncertain center

2 Z2=[0.6 1.2 ; 0.6 -1.2]; % generators with normally distributed factors
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3 pZ=probZonotope(Z1,Z2,2); % probabilistic zonotope

4

5 M=[-1 -1;1 -1]*0.2; % mapping matrix

6 pZencl = enclose(pZ,M); % probabilistic enclosure of pZ and M*pZ

7

8 figure(’renderer’,’zbuffer’)

9 hold on

10 plot(pZ,’dark’); % plot pZ

11 plot(expm(M)*pZ,’light’); % plot expm(M)*pZ

12 plot(pZencl,’mesh’) % plot enclosure

13

14 campos([-3,-51,1]); %set camera position

15 drawnow; % draw 3D view

The plot generated in lines 10-15 is shown in Fig. 9.

Figure 9: Sets generated in lines 10-15 of the probabilistic zonotope example in Sec. 7.4.1.

7.5 Constrained Zonotopes

An extension of zonotopes described in Sec. 7.1 are constrained zonotopes, which are introduced
in [4]. A constrained zonotope is defined as a zonotope with additional equality constraints on
the factors βi:

Zc =
{

c+Gβ
∣
∣
∣‖β‖∞ ≤ 1, Aβ = b

}

, (3)

where c ∈ Rn is the zonotope center, G ∈ Rn×p is the zonotope generator matrix and β ∈ Rp is
the vector of zonotope factors. The equality constraints are parametrized by the matrix A ∈ Rq×p

and the vector b ∈ Rq. Constrained zonotopes are able to describe arbitrary polytopes, and are
therefore a more general set representation than zonotopes. The main advantage compared to a
polytope representation using inequality constraints (see Sec. 7.6) is that constrained zonotopes
inherit the excellent scaling properties of zonotopes for increasing state space dimensions, since
constrained zonotopes are also based on a generator representation for sets.

Constrained zonotopes are implemented in the class conZonotope, which supports the following
methods:

• and – computes the intersection of a conZonotope object with other set representations.
More details can be found in Sec. 7.5.1.
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• boundDir – computes an upper and lower bound for the projection of a conZonotope onto
a certain state space direction (vector).

• conZonotope – constructor of the class.

• display – standard method, see Sec. 7.

• enclose – generates a conZonotope object that encloses two constrained zonotopes. More
details can be found in Sec. 7.5.2.

• interval – standard method, see Sec. 7.

• isempty – returns 1 if a conZonotope object is empty and 0 otherwise.

• mptPolytope – converts a conZonotope object into a mptPolytope object.

• mtimes – standard method, see Sec. 7. More details can be found in [4].

• plot – standard method, see Sec. 7. More details can be found in Sec. 7.12.

• plotFilled – standard method, see Sec. 7. More details can be found in Sec. 7.12.

• plotZono – plots a two-dimensional projection of the conZonotope object together with
the corresponding zonotope.

• plus – standard method, see Sec. 7. More details can be found in Sec. 7.5.3.

• project – returns a conZonotope object, which is the projection of the input argument
onto the specified dimensions.

• reduce – returns an over-approximating conZonotope object with fewer generators and/or
constraints as detailed in Sec. 7.5.4.

• rescale – prune the domain of the zonotope factors βi by adequate adaption of the
zonotope generators. More details can be found in [4].

• vertices – returns a vertices object including all vertices of the conZonotope object
(Warning: high computational complexity).

• zonotope – returns a zonotope object that over-approximates the conZonotope object.

7.5.1 Method and

Table 7 lists the classes that can be intersected with a conZonotope object. Please note that
the order plays a role and that the conZonotope object has to be on the left side of the ’&’

operator.

Table 7: Classes that can be intersected with a conZonotope object.

class reference literature

conZonotope Sec. 7.5 [4, Proposition 1]
zonotope Sec. 7.1 -
interval Sec. 7.7 -
mptPolytope Sec. 7.6 -
halfspace - -
constrainedHyperplane - -
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7.5.2 Method enclose

The method enclose can only be applied if one constrained zonotope Zc,2 represents a linear
transformation of the other constrained zonotope Zc,1:

Zc,2 = T · Zc,1 + t, (4)

where T ∈ Rm×n is a transformation matrix and n is the dimension of the state space. Table 8
lists the classes that are valid values for the variable t in (4). The reason for this requirement is
that with the restriction implied by (4) it is possible to calculate a very tight enclosure of the
conZonotope objects Zc,1 and Zc,2. In addition, the main application of the enclose function
in CORA is the calculation of the convex hull during reachability analysis, where the restriction
formulated in (4) is always fulfilled.

Table 8: Classes that represent valid values for the vector t in (4).

class reference literature

MATLAB vector - -
zonotope Sec. 7.1 -
interval Sec. 7.7 -

7.5.3 Method plus

Table 9 lists the classes that can be added to a conZonotope object. Unlike with intersection,
the conZonotope object can be on both sides of the ’+’ operator.

Table 9: Classes that can be added to a conZonotope object.

class reference literature

MATLAB vector - -
conZonotope Sec. 7.5 [4, Proposition 1]
zonotope Sec. 7.1 -
interval Sec. 7.7 -

7.5.4 Method reduce

One parameter to describe the complexity of a constrained zonotope is the degrees-of-freedom
order oc = (p−q)/n, where p represents the number of generators, q is the number of constraints
and n is the state space dimension. The method reduce implements the two options reduction
of the number of constraints q [4, Section 4.2], and reduction of the degrees-of-freedom order
oc [4, Section 4.3].

7.5.5 Constrained Zonotope Example

The following MATLAB code demonstrates some of the introduced methods:

1 Z = [0 1 0 1; 0 1 2 -1]; % zonotope (center + generators)

2 A = [-2 1 -1]; % constraints (matrix A)

2 b = 2; % constraints (vector b)

3

4 cZ = conZonotope(Z,A,b) % construct conZonotope object
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6

7 plotZono(cZ,[1,2]) % visualize conZonotope object + linear zonotope

This produces the workspace output

id: 0

dimension: 2

c:

0

0

g_i:

1 0 1

1 2 -1

A:

-2 1 -1

b:

2

The plot generated in line 9 is shown in Fig. 10. Fig. 11 displays a visualization of the constraints
for the conZonotope object that is shown in Fig. 10.

-2 -1 0 1 2
x

1

-4

-2

0

2

4

x
2

Figure 10: Zonotope (blue) and the corre-
sponding constrained zonotope (red) gener-
ated in the constrained zonotope example
in Sec. 7.5.5
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Figure 11: Visualization of the constraints
for the conZonotope object generated in
the constrained zonotope example in Sec.
7.5.5.

7.6 MPT Polytopes

There exist two representations for polytopes: The halfspace representation (H-representation)
and the vertex representation (V-representation). The halfspace representation specifies a convex
polytope P by the intersection of q halfspaces H(i): P = H(1) ∩H(i) ∩ . . . ∩H(q). A halfspace is
one of the two parts obtained by bisecting the n-dimensional Euclidean space with a hyperplane
S, which is given by S := {x|cTx = d}, c ∈ Rn, d ∈ R. The vector c is the normal vector of the
hyperplane and d the scalar product of any point on the hyperplane with the normal vector.
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From this follows that the corresponding halfspace is H := {x|cTx ≤ d}. As the convex polytope
P is the nonempty intersection of q halfspaces, q inequalities have to be fulfilled simultaneously.

H-Representation of a Polytope A convex polytope P is the bounded intersection of q
halfspaces:

P =
{

x ∈ Rn
∣
∣C x ≤ d

}

, C ∈ Rq×n, d ∈ Rq.

When the intersection is unbounded, one obtains a polyhedron [28].

A polytope with vertex representation is defined as the convex hull of a finite set of points in
the n-dimensional Euclidean space. The points are also referred to as vertices and are denoted
by v(i) ∈ Rn. A convex hull of a finite set of r points v(i) ∈ Rn is obtained from their linear
combination:

Conv(v(1), . . . , v(r)) :=
{ r∑

i=1

αiv
(i)
∣
∣αi ∈ R, αi ≥ 0,

r∑

i=1

αi = 1
}

.

Given the convex hull operator Conv(), a convex and bounded polytope can be defined in vertex
representation as follows:

V-Representation of a Polytope For r vertices v(i) ∈ Rn, a convex polytope P is the set
P = Conv(v(1), . . . , v(r)).

The halfspace and the vertex representation are illustrated in Fig. 12. Algorithms that convert
from H- to V-representation and vice versa are presented in [29].

v(i)

Conv(v(1), . . . , v(r))

(a) V − representation

S = {x|cTx = d}
H(i)

H(1) ∩H(2) . . . ∩H(q)

(b) H − representation

Figure 12: Possible representations of a polytope.

The class mptPolytope is a wrapper class that interfaces with the MATLAB toolbox Multi-
Parametric Toolbox (MPT) for the following methods:

• and – computes the intersection of two mptPolytopes.

• conZonotope – converts a mptPolytope object into a constrained zonotope.

• dimension – returns the dimension of an mptPolytope.

• display – standard method, see Sec. 7.

• enclose – computes the convex hull of two mptPolytopes.

• in – determines if a zonotope is enclosed by a mptPolytope.

• interval – encloses a mptPolytope by intervals of INTLAB.

• interval – encloses a mptPolytope by an interval.

• iscontained – returns if a mptPolytope is contained in another mptPolytope.

• isempty – returns 1 if a mptPolytope is empty and 0 otherwise.
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• le – overloads the ’¡=’ operator; returns 1 if one polytopes is equal or enclosed by the
other one and 0 otherwise.

• mldivide – computes the set difference of two mptPolytopes.

• mldivide – computes the set difference P1 \ P2 such that P2 is subtracted from P1.

• mptPolytope – constructor of the class.

• minus – overloaded ’-’ operator for the subtraction of a vector from an mptPolytope or
the Minkowski difference between two mptPolytope objects.

• mtimes – standard method, see Sec. 7 for numeric and interval matrix multiplication.

• or – overloaded ’—’ operator to compute the union of two mptPolytopes.

• plot – standard method, see Sec. 7. More details can be found in Sec. 7.12.

• plotFilled – standard method, see Sec. 7. More details can be found in Sec. 7.12.

• project – projects a mptPolytope onto a set of dimensions.

• plus – standard method, see Sec. 7 for numeric vectors and mptPolytope objects.

• vertices – returns a vertices object including all vertices of the polytope.

• volume – computes the volume of a polytope.

7.6.1 MPT Polytope Example

The following MATLAB code demonstrates some of the introduced methods:

1 Z1 = zonotope([1 1 1; 1 -1 1]); % create zonotope Z1

2 Z2 = zonotope([-1 1 0; 1 0 1]); % create zonotope Z2

3

4 P1 = polytope(Z1); % convert zonotope Z1 to halfspace representation

5 P2 = polytope(Z2); % convert zonotope Z2 to halfspace representation

6

7 P3 = P1 + P2 % perform Minkowski addition and display result

8 P4 = P1 & P2; % compute intersection of P1 and P2

9

10 V = vertices(P4) % obtain and display vertices of P4

11

12 figure; hold on

13 plot(P1); % plot P1

14 plot(P2); % plot P2

15 plot(P3,[1 2],’g’); % plot P3

16 plotFilled(P4,[1 2],[.6 .6 .6],’EdgeColor’,’none’); % plot P4

This produces the workspace output

Normalized, minimal representation polytope in R^2

H: [8x2 double]

K: [8x1 double]

normal: 1

minrep: 1

xCheb: [2x1 double]

RCheb: 2.8284
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[ 0.70711 -0.70711] [1.4142]

[ 0 -1] [ 1]

[-0.70711 -0.70711] [1.4142]

[ -1 0] [ 3]

[-0.70711 0.70711] x <= [4.2426]

[ 0 1] [ 5]

[ 0.70711 0.70711] [4.2426]

[ 1 0] [ 3]

V:

0 -1.0000 0

0 1.0000 2.0000

The plot generated in lines 13-16 is shown in Fig. 13.
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Figure 13: Sets generated in lines 13-16 of the MPT polytope example in Sec. 7.6.1.

7.7 Intervals

A real-valued interval [x] = [x, x] = {x ∈ R|x ≤ x ≤ x} is a connected subset of R and can be
specified by a left bound x ∈ R and right bound x ∈ R, where x ≤ x. A detailed description of
how intervals are treated in CORA can be found in [7]. Since this class has a lot of methods,
we separate them into methods that realize mathematical functions and methods that do not
realize mathematical functions.

Methods realizing mathematical functions and operations

• abs – returns the absolute value as defined in [7, Eq. (10)].

• acos – arccos(·) function as defined in [7, Eq. (6)].

• acosh – arccosh(·) function as defined in [7, Eq. (8)].

• and – computes the intersection of two intervals as defined in [7, Eq. (1)].

• asin – arcsin(·) function as defined in [7, Eq. (6)].

• asinh – arcsinh(·) function as defined in [7, Eq. (8)].

• atan – arctan(·) function as defined in [7, Eq. (6)].
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• atanh – arctanh(·) function as defined in [7, Eq. (8)].

• cos – cos(·) function as defined in [7, Eq. (13)].

• cosh – cosh(·) function as defined in [7, Eq. (7)].

• ctranspose – overloaded ’ ’ ’ operator for single operand to transpose a matrix.

• eq – overloads the ’==’ operator to check if both intervals are equal.

• exp – exponential function as defined in [7, Eq. (4)].

• le – overloads <= operator: Is one interval equal or the subset of another interval?

• log – natural logarithm function as defined in [7, Eq. (5)].

• lt – overloads < operator: Is one interval equal or the subset of another interval?

• minus – overloaded ’-’ operator, see [7, Eq. (2)].

• mpower – overloaded ’ˆ’ operator (power), see [7, Eq. (9)].

• mrdivide – overloaded ’/’ operator (division), see [7, Eq. (3)].

• mtimes – overloaded ’*’ operator (multiplication), see [7, Eq. (2)] for scalars and [7,
Eq. (16)] for matrices.

• ne – overloaded ’ =’ operator.

• plus – overloaded ’+’ operator (addition), see [7, Eq. (2)] for scalars and [7, Eq. (17)] for
matrices.

• power – overloaded ’.ˆ’ operator for intervals (power), see [7, Eq. (9)].

• prod – product of array elements.

• rdivide – overloads the ’./’ operator: provides elementwise division of two matrices.

• sin – sin(·) function as defined in [7, Eq. (12)].

• sinh – sinh(·) function as defined in [7, Eq. (7)].

• sqrt –
√

(·) function as defined in [7, Eq. (5)].

• tan – tan(·) function as defined in [7, Eq. (14)].

• tanh – tanh(·) function as defined in [7, Eq. (7)].

• times – overloaded ’.*’ operator for elementwise multiplication of matrices.

• transpose – overloads the ’ .’ ’ operator to compute the transpose of an interval matrix.

• uminus – overloaded ’-’ operator for a single operand.

• uplus – overloaded ’+’ operator for single operand.

Other methods

• diag – create diagonal matrix or get diagonal elements of matrix.

• display – standard method, see Sec. 7.

• enclosingRadius – computes radius of enclosing hyperball of an interval.

• enlarge – enlarges an interval object around its center.
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• gridPoints – computes grid points of an interval; the points are generated in a way such
that a continuous space is uniformly partitioned.

• horzcat – overloads the operator for horizontal concatenation, e.g., a = [b,c,d].

• hull – returns the union of two intervals.

• in – determines if elements of a zonotope are in an interval.

• infimum – returns the infimum of an interval.

• interval – constructor of the class.

• isempty – returns 1 if an interval is empty and 0 otherwise.

• isIntersecting – determines if a set intersects an interval.

• isscalar – returns 1 if interval is scalar and 0 otherwise.

• length – overloads the operator that returns the length of the longest array dimension.

• mid – returns the center of an interval.

• plot – standard method, see Sec. 7. More details can be found in Sec. 7.12.

• plotFilled – standard method, see Sec. 7. More details can be found in Sec. 7.12.

• polytope – converts an interval object to a polytope.

• rad – returns the radius of an interval.

• reshape – overloads the operator ’reshape’ for reshaping matrices.

• size – overloads the operator that returns the size of the object, i.e., length of an array
in each dimension.

• subsasgn – overloads the operator that assigns elements of an interval matrix I, e.g.,
I(1,2)=value, where the element of the first row and second column is set.

• subsref – overloads the operator that selects elements of an interval matrix I, e.g.,
value=I(1,2), where the element of the first row and second column is read.

• sum – overloaded ’sum()’ operator for intervals.

• supremum – returns the supremum of an interval.

• vertcat – overloads the operator for vertical concatenation, e.g., a = [b;c;d].

• vertices – returns a vertices object including all vertices.

• volume – computes the volume of an interval.

• zonotope – converts an interval object to a zonotope object.

7.7.1 Interval Example

The following MATLAB code demonstrates some of the introduced methods:

1 I1 = interval([0; -1], [3; 1]); % create interval I1

2 I2 = interval([-1; -1.5], [1; -0.5]); % create interval I2

3 Z1 = zonotope([1 1 1; 1 -1 1]); % create zonotope Z1

4

5 r = rad(I1) % obtain and display radius of I1

6 is_intersecting = isIntersecting(I1, Z1) % Z1 intersecting I1?
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7 I3 = I1 & I2; % computes the intersection of I1 and I2

8 c = mid(I3) % returns and displays the center of I3

9

10 figure; hold on

11 plot(I1); % plot I1

12 plot(I2); % plot I2

13 plot(Z1,[1 2],’g’); % plot Z1

14 plotFilled(I3,[1 2],[.6 .6 .6],’EdgeColor’,’none’); % plot I3

This produces the workspace output

r =

1.5000

1.0000

is_intersecting =

1

c =

0.5000

-0.7500

The plot generated in lines 11-14 is shown in Fig. 14.
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Figure 14: Sets generated in lines 11-14 of the interval example in Sec. 7.7.1.

7.8 Taylor Models

Taylor models [30–33] can be used to obtain rigorous bounds of functions that are often tighter
than the ones obtained by interval arithmetic. To define Taylor models, we first introduce an n-
dimensional interval [x] := [x, x], ∀i : xi ≤ xi, x, x ∈ Rn. Let us next introduce the multi-index
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set (see Sec. 3 in [34])

Lq =
{

(l1, l2, . . . , ln)
∣
∣
∣li ∈ N,

n∑

i=1

li ≤ q
}

.

We define P q(x− x0) as the q-th order Taylor polynomial of f(x) around x0 (x, x0 ∈ Rn):

P q(x− x0) =
∑

l∈Lq

(x1 − x0,1)
l1 . . . (xn − x0,n)

ln

l1! . . . ln!

(

∂l1+...+lnf(x)

∂xl11 . . . ∂xlnn

)∣
∣
∣
∣
∣
x=x0

. (5)

Let f : Rn → Rm be a function that is (q + 1) times continuously differentiable in an open set
containing the n-dimensional interval [x]. Given P q(x−x0) as the q-th order Taylor polynomial
of f(x) around x0 ∈ [x], we choose an n-dimensional interval [I] such that

∀x ∈ [x] : f(x) ∈ P q(x− x0) + [I]. (6)

The pair T = (P q(x− x0), I) is called an q-th order Taylor model of f(x) around x0 (see Def. 1
in [32]). From now on we use the shorthand notation (P, I), and we omit q, x, and x0 when it is
self-evident. Further information can be found in [31, Sec. 2]. An illustration of a fourth-order
Taylor model is shown in Fig. 15 for r = cos(x) and the range [x] = [−π/3, π/2].
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P q(x− x0) + I

P q(x− x0) + I

Figure 15: Fourth-order Taylor model for cos(x) and [x] = [−π/3, π/2].

A detailed description of how Taylor models are treated in CORA can be found in [3]. In
contrast to interval arithmetic and affine arithmetic, Taylor models do not directly provide a
range of possible values. The bounds of a Taylor model T with a polynomial P and interval [I]
can be over-approximated as

B(T ) = B(P ) + [I]

using
B(P q(x− x0)) = [min

x∈[x]
P q(x− x0),max

x∈[x]
P q(x− x0)]. (7)

Several approaches to obtain B(P ) exist, out of which interval arithmetic, branch and bound,
and the LDB/QFB algorithm are currently implemented in CORA.

7.8.1 Creating Taylor Models

Taylor models are implemented in CORA by the class taylm. To make use of cancellation effects,
we have to provide names for variables in order to recognize identical variables; this is different
from implementations of interval arithmetic, where each variable is treated individually. We
have realized three primal ways to generate a matrix containing Taylor models.
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Method 1: Composition from scalar Taylor models. The first possibility is to generate
scalar Taylor models from intervals as shown subsequently.

1 a1 = interval(-1, 2); % generate a scalar interval [-1,2]

2 b1 = taylm(a1, 6); % generate a scalar Taylor model of order 6

3 a2 = interval(2, 3); % generate a scalar interval [2,3]

4 b2 = taylm(a2, 6); % generate a scalar Taylor model of order 6

5 c = [b1; b2] % generate a row of Taylor models

When a scalar Taylor model is generated from a scalar interval, the name of the variable is
deduced from the name of the interval. If one wishes to overwrite the name of a variable a2 to
c, one can use the command taylm(a2, 6, {’c’}).

Method 2: Converting an interval matrix. One can also first generate an interval matrix,
i.e., a matrix containing intervals, and then convert the interval matrix into a Taylor model.
The subsequent example generates the same Taylor model as in the previous example.

1 a = interval([-1;2], [2;3]); % generate an interval vector [[-1,2]; [2,3]]

2 c = taylm(a, 6, {’a1’;’a2’}) % generate Taylor model (order 6)

Note that the cell for naming variables {’a1’;’a2’} has to have the same dimensions as the
interval matrix a. If no names are provided, default names are automatically generated.

Method 3: Symbolic expressions. We also provide the possibility to create a Taylor model
from a symbolic expression.

1 syms a1 a2; % instantiate symbolic variables

2 s = [2 + 1.5*a1; 2.75 + 0.25*a2]; % create symbolic function

3 c = taylm(s, interval([-2;-3],[0;1]), 6) % generate Taylor model

This method does not require naming variables since variable names are taken from the variable
names of the symbolic expression. The interval of possible values has to be specified after the
symbolic expression s; here: [[−2, 0] [−3, 1]]T .

All examples generate a row vector c. Since all variables are normalized to the range [−1, 1], we
obtain

c =

[
0.5 + 1.5 · ã1 + [0, 0]
2.5 + 0.5 · ã2 + [0, 0]

]

.

The following workspace output of MATLAB demonstrates how the dependency problem is
considered by keeping track of all encountered variables:

>> c(1) + c(1)

ans =

1.0 + 3.0*a1 + [0.00000,0.00000]

>> c(1) + c(2)

ans =

3.0 + 1.5*a1 + 0.5*a2 + [0.00000,0.00000]
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7.8.2 List of Functions of the Class taylm

In this subsection we list the functions realized in CORA. Since CORA is implemented in MAT-
LAB, the function names are chosen such that they overload the built-in MATLAB functions.
Since this class has a lot of methods, we separate them into methods that realize mathematical
functions and methods that do not realize mathematical functions.

Methods realizing mathematical functions and operations

• acos – arccos(·) function as defined in [3, Eq. (31)].

• asin – arcsin(·) function as defined in [3, Eq. (30)].

• atan – arctan(·) function as defined in [3, Eq. (32)].

• cos – cos(·) function as defined in [3, Eq. (25)].

• cosh – cosh(·)function as defined in [3, Eq. (28)].

• det – determinant of a Taylor model matrix.

• exp – exponential function as defined in [3, Eq. (21)].

• interval – various implementations of the bound operatorB(·) as presented in [3, Sec. 2.3].

• log – natural logarithm function as defined in [3, Eq. (22)].

• minus – overloaded ’-’ operator, see [3, Eq. (7)].

• mpower – overloaded ’ˆ’ operator (power).

• mrdivide – overloaded ’/’ operator (division), see [3, Eq. (9)].

• mtimes – overloaded ’*’ operator (multiplication), see [3, Eq. (8)] for scalars and [3, Sec. 2.4]
for matrices.

• plus – overloaded ’+’ operator (addition), see [3, Eq. (6)] for scalars and [3, Sec. 2.4] for
matrices.

• power – overloaded ’.ˆ’ operator (elementwise power).

• rdivide – overloads the ’./’ operator: provides elementwise division of two matrices.

• reexpand – re-expand the Taylor model at a new expansion point.

• sin – sin(·) function as defined in [3, Eq. (24)].

• sinh – sinh(·) function as defined in [3, Eq. (27)].

• sqrt –
√

(·) function as defined in [3, Eq. (23)].

• tan – tan(·) function as defined in [3, Eq. (26)].

• tanh – tanh(·) function as defined in [3, Eq. (29)].

• times – overloaded ’.*’ operator for elementwise multiplication of matrices.

• trace – trace of a Taylor model matrix.

• uminus – overloaded ’-’ operator for a single operand.

• uplus – overloaded ’+’ operator for a single operand.
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Other methods

• display – displays the values of a taylm object in the MATLAB workspace.

• getCoef – returns the array of polynomial coefficients of a taylm object.

• getRem – returns the interval part of a taylm object.

• getSyms – returns the polynomial part of a taylm object as a symbolic expression.

• optBnb – implementation of the branch and bound algorithm as presented in [3, Sec. 2.3.2].

• optBnbAdv – implementation of the advanced branch and bound algorithm as presented
in [3, Sec. 2.3.2].

• optLinQuad – implementation of the algorithm based on LDB and QFB as presented
in [3, Sec. 2.3.3].

• horzcat – overloads the operator for horizontal concatenation, e.g., a = [b, c, d].

• set – set the additional class parameters (see [3, Sec. 4.3]).

• setName – set the names of the variables in taylm.

• subsasgn – overloads the operator that assigns elements of a taylm matrix I, e.g., I(1,2)
= value, where the element of the first row and second column is set.

• subsref – overloads the operator that selects elements of a taylm matrix I, e.g., value =

I(1,2), where the element of the first row and second column is read.

• taylm – constructor of the taylm class.

• vertcat – overloads the operator for vertical concatenation, e.g., a = [b; c; d].

7.8.3 Additional Parameters for the Class taylm

CORA’s Taylor model implementation contains some additional parameters which can be mod-
ified by the user:

• max order: Maximum polynomial degree of the monomials in the polynomial part of the
Taylor model. Monomials with a degree larger than max order are bounded with the
bounding operator B(·) and added to the interval remainder. Further, q = max order is
used for the implementation of the formulas listed in [3, Appendix A].

• tolerance: Minimum absolute value of the monomial coefficients in the polynomial part
of the Taylor model. Monomials with a coefficient whose absolute value is smaller than
tolerance are bounded with the bounding operator B(·) and added to the interval re-
mainder.

• eps: Termination tolerance ǫ for the branch and bound algorithm from [3, Sec. 2.3.2]
and for the algorithm based on the Linear Dominated Bounder and the Quadratic Fast
Bounder from [3, Sec. 2.3.3].

These parameters are stored as properties of the class taylm. In the functions plus, minus, and
times, two Taylor models are combined to one resulting Taylor model object using the rules

max ordernew = max(max order1,max order2),

tolerancenew = min(tolerance1, tolerance2),

epsnew = min(eps1, eps2),

(8)

where the subscript new refers to the resulting object, and 1 and 2 to the initial objects.
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7.8.4 Taylor Models for Reachability Analysis

During reachabilty analysis for nonlinear systems (see Sec. 9.4), the set of abstraction errors L
is obtained by computing upper and lower bounds for the Lagrange remainder function of the
Taylor series. This is a classical range bounding problem, and therefore Taylor models can be
applied to solve it. Since Taylor models often lead to tighter bounds compared to interval arith-
metic, the expection is that the usage of Taylor models leads to a tighter over-approximation of
the set of abstraction errors, which then results in a tighter over-approximation of the reachable
set. The following algorithm settings enable the evaluation of the set of abstraction errors with
Taylor models:

• options.lagrangeRem.method: Method that is used to compute the bounds for the set of
abstraction errors. The available methods are ’interval’ (interval arithmetic), ’taylorModel’
or ’zoo’. The default value is ’interval’.

• options.lagrangeRem.maxOrder: Maximum polynomial degree of the monomials in the
polynomial part of the Taylor model (see Sec. 7.8.3).

• options.lagrangeRem.optMethod: Method used to calculate the bounds of the Talyor
model objects. The available methods are ’int’ (interval arithmetic), ’bnb’ (branch and
bound algorithm), ’bnbAdv’ (branch and bound with Taylor model re-expansion) and
’linQuad’ (optimization with Linear Dominated Bounder and Quadratic Fast Bounder)

• options.lagrangeRem.tolerance: Minimum absolute value of the monomial coefficients
in the polynomial part of the Taylor model (see Sec. 7.8.3).

• options.lagrangeRem.eps: Termination tolerance ǫ for the branch and bound algo-
rithm and the algorithm based on the Linear Dominated Bounder and the Quadratic
Fast Bounder (see Sec. 7.8.3).

A list that summarizes all available algorithm settings is provided later on in Section 12.

7.8.5 Taylor Model Example

This section presents the results of several examples evaluated in CORA:

1 a1 = interval(-1, 2); % generate a scalar interval [-1,2]

2 a2 = interval(2, 3); % generate a scalar interval [2,3]

3 a3 = interval(-6, -4); % generate a scalar interval [-6,4]

4 a4 = interval(4, 6); % generate a scalar interval [4,6]

5

6 b1 = taylm(a1, 6); % Taylor model with maximum order of 6 and name a1

7 b2 = taylm(a2, 6); % Taylor model with maximum order of 6 and name a2

8 b3 = taylm(a3, 6); % Taylor model with maximum order of 6 and name a3

9 b4 = taylm(a4, 6); % Taylor model with maximum order of 6 and name a4

10

11 B1 = [b1; b2] % generate a row of Taylor models

12 B2 = [b3; b4] % generate a row of Taylor models

13

14 B1 + B2 % addition

15 B1’ * B2 % matrix multiplication

16 B1 .* B2 % pointwise multiplication

17 B1 / 2 % division by scalar

18 B1 ./ B2 % pointwise division

19 B1.ˆ3 % power function

20 sin(B1) % sine function
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21 sin(B1(1,1)) + B1(2,1).ˆ2 - B1’ * B2 % combination of functions

The resulting workspace output is:

B1 =

0.5 + 1.5*a1 + [0.00000,0.00000]

2.5 + 0.5*a2 + [0.00000,0.00000]

B2 =

-5.0 + a3 + [0.00000,0.00000]

5.0 + a4 + [0.00000,0.00000]

B1 + B2 =

-4.5 + 1.5*a1 + a3 + [0.00000,0.00000]

7.5 + 0.5*a2 + a4 + [0.00000,0.00000]

B1’ * B2 =

10.0 - 7.5*a1 + 2.5*a2 + 0.5*a3 + 2.5*a4 + 1.5*a1*a3 + 0.5*a2*a4 + [0.00000,0.00000]

B1 .* B2 =

-2.5 - 7.5*a1 + 0.5*a3 + 1.5*a1*a3 + [0.00000,0.00000]

12.5 + 2.5*a2 + 2.5*a4 + 0.5*a2*a4 + [0.00000,0.00000]

B1 / 2 =

0.25 + 0.75*a1 + [0.00000,0.00000]

1.25 + 0.25*a2 + [0.00000,0.00000]

B1 ./ B2 =

-0.1 - 0.3*a1 - 0.02*a3 - 0.06*a1*a3 - 0.004*a3^2 - 0.012*a1*a3^2

- 0.0008*a3^3 - 0.0024*a1*a3^3 - 0.00016*a3^4 - 0.00048*a1*a3^4

- 0.000032*a3^5 - 0.000096*a1*a3^5 - 6.4e-6*a3^6 + [-0.00005,0.00005]

0.5 + 0.1*a2 - 0.1*a4 - 0.02*a2*a4 + 0.02*a4^2 + 0.004*a2*a4^2

- 0.004*a4^3 - 0.0008*a2*a4^3 + 0.0008*a4^4 + 0.00016*a2*a4^4

- 0.00016*a4^5 - 0.000032*a2*a4^5 + 0.000032*a4^6 + [-0.00005,0.00005]

B1.^3 =

0.125 + 1.125*a1 + 3.375*a1^2 + 3.375*a1^3 + [0.00000,0.00000]

15.625 + 9.375*a2 + 1.875*a2^2 + 0.125*a2^3 + [0.00000,0.00000]

sin(B1) =

0.47943 + 1.3164*a1 - 0.53935*a1^2 - 0.49364*a1^3 + 0.10113*a1^4

+ 0.055535*a1^5 - 0.0075847*a1^6 + [-0.00339,0.00339]

0.59847 - 0.40057*a2 - 0.074809*a2^2 + 0.01669*a2^3 + 0.0015585*a2^4

- 0.00020863*a2^5 - 0.000012988*a2^6 + [-0.00000,0.00000]

sin(B1(1,1)) + B1(2,1).^2 - B1’ * B2 =

-3.2706 + 8.8164*a1 - 0.5*a3 - 2.5*a4 - 0.53935*a1^2 + 0.25*a2^2

- 1.5*a1*a3 - 0.5*a2*a4 - 0.49364*a1^3 + 0.10113*a1^4

+ 0.055535*a1^5 - 0.0075847*a1^6 + [-0.00339,0.00339]

7.9 Affine

Affine arithmetic uses affine forms, i.e., first-order polynomials consisting of a vector x ∈ Rn

and noise symbols ǫi ∈ [−1, 1] (see e.g., [35]):

x̂ = x0 + ǫ1x1 + ǫ2x2 + . . .+ ǫpxp.

The possible values of x̂ lie within a zonotope [36]. In contrast to Taylor models, it is possible
that p > n so that affine forms are not a special case of Taylor models. This is the same reason
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why polynomial zonotopes are different from Taylor models, since polynomial zonotopes are a
generalization of zonotopes [24].

For the CORA class affine we only consider intervals as inputs and outputs, and therefore
realize affine arithmetic as Taylor models of first order. The class inherits all methods from the
class taylm and does not implement any functionality on its own. The main purpose of the class
affine is to provide a convenient and easy-to-use interface for the user.

The following code example demonstrates the usage of the class affine:

1 % create affine object

2 int = interval(-1,1);

3 aff = affine(int);

4

5 % create taylor model object (for comparison)

6 maxOrder = 1;

7 tay = taylm(int,maxOrder,’x’);

8

9 % define function

10 f = @(x) sin(x) * (x+1);

11

12 % evaluate the function with affine arithmetic and taylor model

13 intAff = interval(f(aff))

14 intTay = interval(f(tay))

The resulting workspace output is:

intAff =

[-1.84147,2.84147]

intTay =

[-1.84147,2.84147]

7.10 Zoo

When it comes to range bounding, it is often better to use several simple range bounding methods
in parallel and intersect the result, instead of using one accurate method. This fact is nicely
demonstrated by the numerical examples shown in [3] and by the code example at the end of
this section. To facilitate mixing different range bounding techniques, we created the class zoo
in which one can specify the methods to be combined.

The following list summerizes all range bounding techniques that are available for class zoo:

• interval – Interval arithmetic (see Sec. 7.7).

• affine(int) – Affine arithmetic; the bounds of the affine objects are calculated with
interval arithmetic (see Sec. 7.9).

• affine(bnb) – Affine arithmetic; the bounds of the affine objects are calculated with the
branch and bound algorithm (see Sec. 7.9).

• affine(bnbAdv) – Affine arithmetic; the bounds of the affine objects are calculated with
the advanced branch and bound algorithm (see Sec. 7.9).

• affine(linQuad) – Taylor models; the bounds of the affine objects are calculated with
the algorithm that is based on the Linear Dominated Bounder and the Quadratic Fast
Bounder (see Sec. 7.9).
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• taylm(int) – Taylor models; the bounds of the Taylor models are calculated with interval
arithmetic (see Sec. 7.8).

• taylm(bnb) – Taylor models; the bounds of the Taylor models are calculated with the
branch and bound algorithm (see Sec. 7.8).

• taylm(bnbAdv) – Taylor models; the bounds of the Taylor models are calculated with the
advanced branch and bound algorithm (see Sec. 7.8).

• taylm(linQuad) – Taylor models; the bounds of the Taylor models are calculated with
the algorithm that is based on the Linear Dominated Bounder and the Quadratic Fast
Bounder (see Sec. 7.8).

In addition to the range bounding techniques, the additional Taylor model parameters described
in Sec. 7.8.3 as well as the names of the variables can be specified as additional parameters for
the class zoo. The bounds of a zoo object can be computed with the interval operator, which
intersects the intervals obtained by all specified techniques. All functions that are implemented
for class taylm are also available for the class zoo.

Similar to Taylor models, zoo objects can be used to calculate tight bounds of the Lagrange
remainder function during reachability analysis for nonlinear systems (see Sec. 7.8.4). When
using zoo objects, the desired range bounding techniques have to be specified as a cell-array of
strings in options.lagrangeRem.zooMethods. A list that summarizes all algorithm settings is
provided later on in Sec. 12.

The following code example demonstrates the usage of the class zoo:

1 % create zoo object

2 int = interval(-1,1);

3 methods = {’interval’,’taylm(int)’};

4 maxOrder = 3;

5 z = zoo(int,methods,maxOrder);

6

7 % create taylor model object (for comparison)

8 maxOrder = 10;

9 tay = taylm(int,maxOrder,’x’);

10

11 % define function

12 f = @(x) sin(x) * (x+1);

13

14 % evaluate the function with zoo-object and taylor model

15 intZoo = interval(f(z))

16 intTay = interval(f(tay))

The resulting workspace output is:

intZoo =

[-1.34206,1.68294]

intTay =

[-1.34207,2.18354]

7.11 Vertices

The vertices class performs operations on a set of vertices, such as enclosing them by a par-
allelotope. The following methods are implemented:

• collect – collects cell arrays (MATLAB-specific container) of vertices.
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• display – standard method, see Sec. 7.

• interval – encloses all vertices by an interval.

• isempty – returns 1 if there is no vertex and 0 otherwise.

• mtimes – standard method, see Sec. 7 for numeric matrix multiplication.

• parallelotope – computes a parallelotope in generator representation based on a coor-
dinate transformation in which the transformed vertices are enclosed by an interval hull.

• plot – standard method, see Sec. 7. More details can be found in Sec. 7.12.

• plot3d – plots the convex hull of vertices in 3D.

• plotFilled – standard method, see Sec. 7. More details can be found in Sec. 7.12.

• plus – standard method, see Sec. 7. Addition is only realized for vertices objects with
MATLAB vectors.

• polygon – computes ordered lists of vertices, defining a polygon; only the first two coor-
dinates are considered.

• subsref – overloads the operator that selects elements of a vertex matrix V, e.g., value=V(1,2),
where the element of the first row and second column is read.

• vertices – constructor of the class.

• zonotope – computes a zonotope that encloses all vertices according to [37, Section 3].

7.11.1 Vertices Example

The following MATLAB code demonstrates some of the introduced methods:

1 Z1 = zonotope([1 1 1; 1 -1 1]); % create zonotope Z1

2 V1 = vertices(Z1); % compute vertices of Z1

3 A = [0.5 1; 1 0.5]; % numerical matrix A

4

5 V2{1} = A*V1; % linear map of vertices

6 V2{2} = V2{1} + [1; 0]; % translation of vertices

7 V3 = collect(V2{1},V2); % collect vertices of cell array V2

8 Zencl = zonotope(V3); % obtain parallelotope containing all vertices

9

10 figure

11 hold on

12 plot(V2{1},’k+’); % plot V2{1}

13 plot(V2{2},’ko’); % plot V2{2}

14 plot(Zencl); % plot Zencl

The plot generated in lines 11-14 is shown in Fig. 16.

7.12 Plotting of Sets

Plotting of reachable sets is performed by first projecting the set onto two dimensions. Those
dimensions can be two states for plots in state space, or a state and a time interval for plots
involving a time axis. A selection of plot types is presented in Fig. 17 for two zonotopes using
the standard MATLAB LineSpec, ColorSpec, and Patch settings. The command plot only
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Figure 16: Sets generated in lines 11-14 of the vertices example in Sec. 7.11.1.

plots the edge, while plotFilled also fills the sets. The corresponding standard MATLAB
functions are plot and fill, respectively.

8 Matrix Set Representations and Operations

Besides vector sets as introduced in the previous section, it is often useful to represent sets of
possible matrices. This occurs for instance, when a linear system has uncertain parameters as
described later in Sec. 9.2. CORA supports the following matrix set representations:

• Matrix polytope (Sec. 8.1)

• Matrix zonotope (Sec. 8.2); specialization of a matrix polytope.

• Interval matrix (Sec. 8.3); specialization of a matrix zonotope.

For each matrix set representation, the conversion to all other matrix set computations is im-
plemented. Of course, conversions to specializations are realized in an over-approximative way,
while the other direction is computed exactly. Note that we use the term matrix polytope instead
of polytope matrix. The reason is that the analogous term vector polytope makes sense, while
polytope vector can be misinterpreted as a vertex of a polytope. We do not use the term matrix
interval since the term interval matrix is already established. Important operations for matrix
sets are

• display: Displays the parameters of the set in the MATLAB workspace.

• mtimes: Overloads the ’*’ operator for the multiplication of various objects with a matrix
set. For instance if M set is a matrix set of proper dimension and Z is a zonotope,
M set ∗ Z returns the linear map {Mx|M ∈ M set, x ∈ Z}.

• plus: Overloads the ’+’ operator for the addition of various objects with a matrix set. For
instance if M1 set and M2 set are interval matrices of proper dimension, M1 set+ M2 set

returns the Minkowski sum {M1 +M2|M1 ∈ M1 set,M2 ∈ M2 set}.
• expm: Returns the set of matrix exponentials for a matrix set.

• intervalMatrix: Computes an enclosing interval matrix.

• vertices: Returns the vertices of a matrix set.

40



8 MATRIX SET REPRESENTATIONS AND OPERATIONS

−2 −1 0 1 2 3
−1

0

1

2

3

(a) plot(Z)

−2 −1 0 1 2 3
−1

0

1

2

3

(b) plot(Z, [1,2], ’r:’)

−2 −1 0 1 2 3
−1

0

1

2

3

(c) plotFilled(Z, [1,2], ’w’,

’EdgeColor’, ’b’)
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(f) plot(Z, [1,2], ’k-’,

’lineWidth’, 3)

Figure 17: Selection of different plot styles.

8.1 Matrix Polytopes

A matrix polytope is analogously defined as a V-polytope (see Sec. 7.6):

A[p] =
{ r∑

i=1

αiV
(i)
∣
∣
∣αi ∈ R, αi ≥ 0,

∑

i

αi = 1
}

, V (i) ∈ Rn×n. (9)

The matrices V (i) are also called vertices of the matrix polytope. When substituting the matrix
vertices by vector vertices v(i) ∈ Rn, one obtains a V-polytope (see Sec. 7.6).

We support the following methods for polytope matrices:

• display – standard method, see Sec. 8.

• expmInd – operator for the exponential matrix of a matrix polytope, evaluated indepen-
dently.

• expmIndMixed – operator for the exponential matrix of a matrix polytope, evaluated in-
dependently. Higher order terms are computed via interval arithmetic.

• intervalMatrix – standard method, see Sec. 8.

• matPolytope – constructor of the class.

• matZonotope – computes an enclosing matrix zonotope of a matrix polytope analogously
to zonotope of the vertices class.
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• mpower – overloaded ’∧’ operator for the power of matrix polytopes.

• mtimes – standard method, see Sec. 8 for numeric matrix multiplication or multiplication
with another matrix polytope.

• plot – plots 2-dimensional projection of a matrix polytope.

• plus – standard method, see Sec. 8. Addition is carried out for two matrix polytopes or
a matrix polytope with a matrix.

• polytope – converts a matrix polytope to a polytope.

• simplePlus – computes the Minkowski addition of two matrix polytopes without reducing
the vertices by a convex hull computation.

• vertices – standard method, see Sec. 8.

Since the matrix polytope class is written using the new structure for object oriented program-
ming in MATLAB, it has the following public properties:

• dim – dimension.

• verts – number of vertices.

• vertex – cell array of vertices V (i) according to (9).

8.1.1 Matrix Polytope Example

The following MATLAB code demonstrates some of the introduced methods:

1 P1{1} = [1 2; 3 4]; % 1st vertex of matrix polytope P1

2 P1{2} = [2 2; 3 3]; % 2nd vertex of matrix polytope P1

3 matP1 = matPolytope(P1); % instantiate matrix polytope P1

4

5 P2{1} = [-1 2; 2 -1]; % 1st vertex of matrix polytope P2

6 P2{2} = [-1 1; 1 -1]; % 2nd vertex of matrix polytope P2

7 matP2 = matPolytope(P2); % instantiate matrix polytope P2

8

9 matP3 = matP1 + matP2 % perform Minkowski addition and display result

10 matP4 = matP1 * matP2 % compute multiplication of and display result

11

12 intP = intervalMatrix(matP1) % compute interval matrix and display result

This produces the workspace output

dimension:

2

nr of vertices:

4

vertices:

0 4

5 3

---------------

0 3

4 3
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---------------

1 4

5 2

---------------

1 3

4 2

---------------

dimension:

2

nr of vertices:

4

vertices:

3 0

5 2

---------------

1 -1

1 -1

---------------

2 2

3 3

---------------

0 0

0 0

---------------

dimension:

2

left limit:

1 2

3 3

right limit:

2 2

3 4

8.2 Matrix Zonotopes

A matrix zonotope is defined analogously to zonotopes (see Sec. 7.1):

A[z] =
{

G(0) +

κ∑

i=1

piG
(i)
∣
∣
∣pi ∈ [−1, 1]

}

, G(i) ∈ Rn×n (10)
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and is written in short form as A[z] = (G(0), G(1), . . . , G(κ)), where the first matrix is referred
to as the matrix center and the other matrices as matrix generators. The order of a matrix
zonotope is defined as ρ = κ/n. When exchanging the matrix generators by vector generators
g(i) ∈ Rn, one obtains a zonotope (see e.g., [17]).

We support the following methods for zonotope matrices:

• concatenate – concatenates the center and all generators of two matrix zonotopes.

• dependentTerms – considers dependency in the computation of Taylor terms for the matrix
zonotope exponential according to [21, Proposition 4.3].

• display – standard method, see Sec. 8.

• dominantVertices – computes the dominant vertices of a matrix zonotope according to
a heuristics.

• expmInd – operator for the exponential matrix of a matrix zonotope, evaluated indepen-
dently.

• expmIndMixed – operator for the exponential matrix of a matrix zonotope, evaluated
independently. Higher order terms are computed via interval arithmetic.

• expmMixed – operator for the exponential matrix of a matrix zonotope, evaluated depen-
dently. Higher order terms are computed via interval arithmetic as discussed in [21, Section
4.4.4].

• expmOneParam – operator for the exponential matrix of a matrix zonotope when only one
parameter is uncertain as described in [38, Theorem 1].

• expmVertex – computes the exponential matrix for a selected number of dominant vertices
obtained by the dominantVertices method.

• intervalMatrix – standard method, see Sec. 8.

• matPolytope – converts a matrix zonotope into a matrix polytope representation.

• matZonotope – constructor of the class.

• mpower – overloaded ’∧’ operator for the power of matrix zonotopes.

• mtimes – standard method, see Sec. 8 for numeric matrix multiplication or a multiplication
with another matrix zonotope according to [21, Equation 4.10].

• norm – computes exactly the maximum norm value of all possible matrices.

• plot – plots 2-dimensional projection of a matrix zonotope.

• plus – standard method (see Sec. 8) for a matrix zonotope or a numerical matrix.

• powers – computes the powers of a matrix zonotope up to a certain order.

• randomSampling – creates random samples within a matrix zonotope.

• reduce – reduces the order of a matrix zonotope. This is done by converting the matrix
zonotope to a zonotope, reducing the zonotope, and converting the result back to a matrix
zonotope.

• uniformSampling – creates samples uniformly within a matrix zonotope.

• vertices – standard method, see Sec. 8.
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• volume – computes the volume of a matrix zonotope by computing the volume of the
corresponding zonotope.

• zonotope – converts a matrix zonotope into a zonotope.

Since the matrix zonotope class is written using the new structure for object oriented program-
ming in MATLAB, it has the following public properties:

• dim – dimension.

• gens – number of generators.

• center – G(0) according to (10).

• generator – cell array of matrices G(i) according to (10).

8.2.1 Matrix Zonotope Example

The following MATLAB code demonstrates some of the introduced methods:

1 Zcenter = [1 2; 3 4]; % center of matrix zonotope Z1

2 Zdelta{1} = [1 0; 1 1]; % generators of matrix zonotope Z1

3 matZ1 = matZonotope(Zcenter, Zdelta); % instantiate matrix zonotope Z1

4

5 Zcenter = [-1 2; 2 -1]; % center of matrix zonotope Z2

6 Zdelta{1} = [0 0.5; 0.5 0]; % generators of matrix zonotope Z2

7 matZ2 = matZonotope(Zcenter, Zdelta); % instantiate matrix zonotope Z2

8

9 matZ3 = matZ1 + matZ2 % perform Minkowski addition and display result

10 matZ4 = matZ1 * matZ2 % compute multiplication of and display result

11

12 intZ = intervalMatrix(matZ1) % compute interval matrix and display result

This produces the workspace output

dimension:

2

nr of generators:

2

center:

0 4

5 3

generators:

1 0

1 1

---------------

0 0.5000

0.5000 0

---------------

dimension:

1
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nr of generators:

3

center:

3 0

5 2

generators:

1.0000 0.5000

2.0000 1.5000

---------------

-1 2

1 1

---------------

0 0.5000

0.5000 0.5000

---------------

dimension:

2

left limit:

0 2

2 3

right limit:

2 2

4 5

8.3 Interval Matrices

An interval matrix is a special case of a matrix zonotope and specifies the interval of possible
values for each matrix element:

A[i] = [A,A], ∀i, j : aij ≤ aij, A,A ∈ Rn×n.

The matrix A is referred to as the lower bound and A as the upper bound of A[i].

We support the following methods for interval matrices:

• abs – returns the absolute value bound of an interval matrix.

• dependentTerms – considers dependency in the computation of Taylor terms for the in-
terval matrix exponential according to [21, Proposition 4.4].

• display – standard method, see Sec. 8.

• dominantVertices – computes the dominant vertices of an interval matrix zonotope ac-
cording to a heuristics.

• exactSquare – computes the exact square of an interval matrix.
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• expm – operator for the exponential matrix of an interval matrix, evaluated dependently.

• expmAbsoluteBound – returns the over-approximation of the absolute bound of the sym-
metric solution of the computation of the exponential matrix.

• expmInd – operator for the exponential matrix of an interval matrix, evaluated indepen-
dently.

• expmIndMixed – dummy function for interval matrices.

• expmMixed – dummy function for interval matrices.

• expmNormInf – returns the over-approximation of the norm of the difference between
the interval matrix exponential and the exponential from the center matrix according
to [21, Theorem 4.2].

• expmVertex – computes the exponential matrix for a selected number of dominant vertices
obtained by the dominantVertices method.

• exponentialRemainder – returns the remainder of the exponential matrix according to
[21, Proposition 4.1].

• interval – converts an interval matrix to an interval.

• intervalMatrix – constructor of the class.

• matPolytope – converts an interval matrix to a matrix polytope.

• matZonotope – converts an interval matrix to a matrix zonotope.

• mpower – overloaded ’∧’ operator for the power of interval matrices.

• mtimes – standard method, see Sec. 8 for numeric matrix multiplication or a multiplication
with another interval matrix according to [21, Equation 4.11].

• norm – computes exactly the maximum norm value of all possible matrices.

• plot – plots 2-dimensional projection of an interval matrix.

• plus – standard method, see Sec. 8. Addition is realized for two interval matrices or an
interval matrix with a matrix.

• powers – computes the powers of an interval matrix up to a certain order.

• randomSampling – creates random samples within a matrix zonotope.

• randomIntervalMatrix – generates a random interval matrix with a specified center and
a specified delta matrix or scalar. The number of elements of that matrix which are
uncertain has to be specified, too.

• subsref – overloads the operator that selects elements, e.g., A(1,2), where the element of
the first row and second column is referred to.

• vertices – standard method, see Sec. 8.

• volume – computes the volume of an interval matrix by computing the volume of the
corresponding interval.

8.3.1 Interval Matrix Example

The following MATLAB code demonstrates some of the introduced methods:
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1 Mcenter = [1 2; 3 4]; % center of interval matrix M1

2 Mdelta = [1 0; 1 1]; % delta of interval matrix M1

3 intM1 = intervalMatrix(Mcenter, Mdelta); % instantiate interval matrix M1

4

5 Mcenter = [-1 2; 2 -1]; % center of interval matrix M2

6 Mdelta = [0 0.5; 0.5 0]; % delta of interval matrix M2

7 intM2 = intervalMatrix(Mcenter, Mdelta); % instantiate interval matrix M2

8

9 intM3 = intM1 + intM2 % perform Minkowski addition and display result

10 intM4 = intM1 * intM2 % compute multiplication of and display result

11

12 matZ = matZonotope(intM1) % compute matrix zonotope and display result

This produces the workspace output

dimension:

2

left limit:

-1.0000 3.5000

3.5000 2.0000

right limit:

1.0000 4.5000

6.5000 4.0000

dimension:

2

left limit:

1.0000 -3.0000

-0.5000 -3.0000

right limit:

5.0000 3.0000

10.5000 7.0000

dimension:

2

nr of generators:

3

center:

1 2

3 4

generators:

1 0

0 0

---------------

0 0
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1 0

---------------

0 0

0 1

---------------

9 Continuous Dynamics

This section introduces various classes to compute reachable sets of continuous and hybrid
dynamics. One can directly compute reachable sets for each class, or include those classes into a
hybrid automaton for the reachability analysis of hybrid systems. Note that besides reachability
analysis, the simulation of particular trajectories is also supported. CORA supports the following
continuous dynamics:

• Linear systems (Sec. 9.1)

• Linear systems with uncertain, fixed or varying parameters (Sec. 9.2)

• Linear probabilistic systems (Sec. 9.3)

• Nonlinear systems (Sec. 9.4)

• Nonlinear systems with uncertain fixed parameters (Sec. 9.6)

• Nonlinear differential-algebraic systems (Sec. 9.7)

Each class for continuous dynamics inherits from the parent class contDynamics. This class
itself is inherited from the matlab.mixin.Copyable class, which is an abstract handle class that
provides a copy method for copying handle objects. This implied that objects created from this
class only reference the object data instead of reserving dedicated memory (call by reference).
Copying an object creates another reference to the same data. To create a true copy, the copy
method has to be used. Since for reachability analysis, multiple instances of the same dynamics
are not required, the instantiation from a matlab.mixin.Copyable class makes sense since one
does not have to pass the changed object for each called method. The continuous set classes,
which inherit from contSet are not using this concept, since sets have to be copied even for
simple operations, such as Z3 = Z1 + Z2, where Zi are zonotope objects.

The parent class provides the following methods:

• derivatives – computes multivariate derivatives (jacobians, hessians, etc.) of nonlinear
systems in a symbolic way.

• dimension – returns the dimension of the system.

• display – displays the parameters of the parent class in the MATLAB workspace.

• reach – computes the reachable set for the entire time horizon.

• simulate random – performs several random simulations of the system. It can be set how
many simulations should be performed, what percentage of initial states should start at
vertices of the initial set, what percentage of inputs should be chosen from vertices of the
input set, and how often the input should be changed.

• simulate rrt – simulates a system using rapidly exploring random trees.

• symVariables – generates symbolic variables of a continuous system.
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In addition, each class realizes these methods:

• display: Displays the parameters of particular continuous dynamics beyond the informa-
tion of the parent class in the MATLAB workspace.

• initReach: Initializes the reachable set computation.

• post: Computes the reachable set for the next time interval.

• simulate: Produces a single trajectory that numerically solves the system for a particular
initial state and a particular input trajectory.

There exist some further auxiliary methods for each class, but those are not relevant unless
one aims to change details of the provided algorithms. In contrast to the set representations,
all continuous systems have the same methods, therefore the methods are not listed for the
individual classes. We mainly focus on the method initReach, which is computed differently
for each class.

9.1 Linear Systems

The most basic system dynamics considered in this software package are linear systems of the
form

ẋ(t) = Ax(t) +Bu(t) + c

y(t) = Cx(t) +Du(t) + k,
(11)

where x(0) ∈ X0 ⊂ Rn, u(t) ∈ U ⊂ Rm, A ∈ Rn×n, B ∈ Rn×m, c ∈ Rn, C ∈ Rp×n, D ∈ Rp×m

and k ∈ Rp. For the computation of reachable sets, we use the equivalent system

ẋ(t) = Ax(t) + ũ(t) + c, x(0) ∈ X0 ⊂ Rn, ũ(t) ∈ Ũ = B ⊗ U ⊂ Rn, c ∈ Rn (12)

where E ⊗ F = {E F |E ∈ E , F ∈ F} is the set-based multiplication (one argument can be a
singleton).

9.1.1 Method initReach

The method initReach computes the required steps to obtain the reachable set for the first
point in time r and the first time interval [0, r] as follows. Given is the linear system in (12).
For further computations, we introduce the center of the set of inputs uc and the deviation from
the center of Ũ , Ũ∆ := Ũ ⊕ (−uc). According to [18, Section 3.2], the reachable set for the first
time interval τ0 = [0, r] is computed as shown in Fig. 18:

1. Starting from X0, compute the set of all solutions Rd
h for the affine dynamics ẋ(t) =

Ax(t) + uc at time r.

2. Obtain the convex hull of X0 and Rd
h to approximate the reachable set for the first time

interval τ0.

3. Compute Rd(τ0) by enlarging the convex hull, firstly to bound all affine solutions within
τ0 and secondly to account for the set of uncertain inputs Ũ∆.

The following private functions take care of the required computations:

• exponential – computes an over-approximation of the matrix exponential eAr based on
the Lagrangian remainder as proposed in [39, Proposition 2]. A more conservative approach
previously used [18, Equation 3.2,3.3].
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X0

R
d
h

convex hull of
X0, R

d
h

R
d(τ0)

➀ ➁ ➂

enlargement

Figure 18: Steps for the computation of an over-approximation of the reachable set for a linear
system.

• tie (time interval error) – computes the error made by generating the convex hull of
reachable sets of points in time for the reachable set of the corresponding time interval as
described in [39, Section 4]. A more conservative approach previously used [18, Proposition
3.1], which can only be used in combination with [18, Equation 3.2,3.3].

• inputSolution – computes the reachable set due to the input according to the superpo-
sition principle of linear systems. The computation is performed as suggested in [18, The-
orem 3.1]. As noted in [39, Theorem 2], it is required that the input set is convex. The
error term in [39, Theorem 2] is slightly better, but is computationally more expensive so
that the algorithm form [18, Theorem 3.1] is used.

9.1.2 Method post

We have implemented two different methods for propagating the reachable sets for each time
interval in the method post. The wrapping-free approach in [40] (set options.linAlg = 1)
and the approach in [17] (set options.linAlg = 2 or do not specify options.linAlg; default
setting). The wrapping-free approach is computationally more efficient and has no wrapping
effect. However, since partial input solution sets are over-approximated by intervals, for some
examples, one obtains overly conservative results. For this reason, we have set the method in [17]
as the default method (the method in [40] was the default method in the 2016 release).

9.2 Linear Systems with Uncertain, Fixed or Varying Parameters

This class extends linear systems by uncertain parameters. We provide two implementations,
one for uncertain parameters that are fixed over time and one for parameters that can arbitrarily
vary over time.

Fixed parameters A linear system with uncertain parameters that are fixed over time can
be written as

ẋ(t) = A(p)x(t) + ũ(t), x(0) ∈ X0 ⊂ Rn, p ∈ P, ũ(t) ∈ Ũ = {B(p)⊗ U|U ⊂ Rn, p ∈ P},
(13)

The approach for fixed parameter values is presented in [18]. To execute this algorithm, one
has to set paramType=’constParam’ or not set this parameter since it is the default setting
(example: linSys = linParamSys(A, B, r, maxOrder)).
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Varying parameters When the parameters are time-varying, we obtain

ẋ(t) = A(t)x(t) + ũ(t), x(0) ∈ XO ⊂ Rn, A(t) ∈ A, ũ(t) ∈ Ũ .

The approach for fixed parameter values is presented in [39]. To execute this algorithm, one
has to set paramType=’varParam’ (example: linSys = linParamSys(A, B, r, maxOrder,

’varParam’)).

Alternative computation An alternative for fixed parameters is to define each parameter
as a state variable x̃i with the trivial dynamics ˙̃xi = 0. For time-varying parameters, one can
specify the parameter as an uncertain input. In both cases, the result is a nonlinear system that
can be handled as described in Sec. 9.4. The problem of whether to compute the solution with
the dedicated approach presented in this section or with the approach for nonlinear systems has
not yet been thoroughly investigated.

For further explanations, we introduce the set of state and input matrices as

A = {A(p)|p ∈ P}, B = {B(p)|p ∈ P}. (14)

The set of state matrices can be represented by any matrix set introduced in Sec. 8.

Since the linParamSys class is written using the new structure for object oriented programming
in MATLAB, it has the following public properties:

• A – set of system matrices A, see (14). The set of matrices can be represented by any
matrix set introduced in Sec. 8.

• B – set of input matrices B, see (14). The set of matrices can be represented by any matrix
set introduced in Sec. 8.

• stepSize – constant step size tk−1− tk for time intervals of the reachable set computation.

• taylorTerms – number of Taylor terms for computing the matrix exponential, see [18,
Theorem 3.2].

• mappingMatrixSet – set of exponential matrices, see Sec. 8.

• E – remainder of matrix exponential computation.

• F – uncertain matrix to bound the error for time interval solutions, see e.g., [18, Proposition
3.1].

• inputF – uncertain matrix to bound the error for time interval solutions of inputs, see
e.g., [18, Proposition 3.4].

• inputCorr – additional uncertainty of the input solution if origin is not contained in input
set, see [18, Equation 3.9].

• Rinput – reachable set of the input solution, see Sec. 9.1.

• Rtrans – reachable set of the input uc, see Sec. 9.1.

• RV – reachable set of the input Ũ∆, see Sec. 9.1.

• sampleMatrix – possible matrix Â such that Â ∈ A.
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9.2.1 Method initReach

The method initReach computes the reachable set for the first point in time r and the first
time interval [0, r] similarly as for linear systems with known parameters. The main difference
is that we have to take into account an uncertain state matrix A and an uncertain input matrix
B. The initial state solution becomes

Rd
h = eArX0 = {eArx0|A ∈ A, x0 ∈ X0}. (15)

Similarly, the reachable set due to the input solution changes as described in [18, Section 3.3].
The following private functions take care of the required computations:

• mappingMatrix – computes the set of matrices which map the states for the next point in
time according to [21, Section 3.1].

• tie (time interval error) – computes the error made by generating the convex hull of
reachable sets of points in time for the reachable set of the corresponding time interval as
described in [21, Section 3.2].

• inputSolution – computes the reachable set due to the input according to the superpo-
sition principle of linear systems. The computation is performed as suggested in [21, The-
orem 1].

9.3 Linear Probabilistic Systems

In contrast to all other systems, we consider stochastic properties in the class linProbSys. The
system under consideration is defined by the following linear stochastic differential equation
(SDE) which is also known as the multivariate Ornstein-Uhlenbeck process [41]:

ẋ = Ax(t) + u(t) + Cξ(t), (16)

x(0) ∈ Rn, u(t) ∈ U ⊂ Rn, ξ ∈ Rm,

where A and C are matrices of proper dimension and A has full rank. There are two kinds of
inputs: the first input u is Lipschitz continuous and can take any value in U ⊂ Rn for which
no probability distribution is known. The second input ξ ∈ Rm is white Gaussian noise. The
combination of both inputs can be seen as a white Gaussian noise input, where the mean value
is unknown within the set U .
In contrast to the other system classes, we compute enclosing probabilistic hulls, i.e., a hull over
all possible probability distributions when some parameters are uncertain and do not have a
probability distribution. In the probabilistic setting (C 6= 0), the probability density function
(PDF) at time t = r of the random process X(t) defined by (16) for a specific trajectory
u(t) ∈ U is denoted by fX(x, r). The enclosing probabilistic hull (EPH) of all possible probability
density functions fX(x, r) is denoted by f̄X(x, r) and defined as: f̄X(x, r) = sup{fX(x, r)|X(t)
is a solution of (16) ∀t ∈ [0, r], u(t) ∈ U , fX(x, 0) = f0}. The enclosing probabilistic hull for a
time interval is defined as f̄X(x, [0, r]) = sup{f̄X(x, t)|t ∈ [0, r]}.

9.3.1 Method initReach

The method initReach computes the probabilistic reachable set for a first point in time r and
the first time interval [0, r] similarly to Sec. 9.1.1. The main difference is that we compute
enclosing probabilistic hulls as defined above. The following private functions take care of the
required computations:
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• pexpm – computes the over-approximation of the exponential of a system matrix similarly
as for linear systems in Sec. 9.1.

• tie (time interval error – computes the tie similarly as for linear systems in Sec. 9.1.

• inputSolution – computes the reachable set due to the input according to the super-
position principle of linear systems. The computation is performed as suggested in [26,
Sec. VI.B].

9.4 Nonlinear Systems

So far, reachable sets of linear continuous systems have been presented. Although a fairly large
group of dynamic systems can be described by linear continuous systems, the extension to non-
linear continuous systems is an important step for the analysis of more complex systems. The
analysis of nonlinear systems is much more complicated since many valuable properties are no
longer valid. One of them is the superposition principle, which allows the homogeneous and
the inhomogeneous solution to be obtained separately. Another is that reachable sets of linear
systems can be computed by a linear map. This makes it possible to exploit that geometric
representations such as ellipsoids, zonotopes, and polytopes are closed under linear transforma-
tions, i.e., they are again mapped to ellipsoids, zonotopes and polytopes, respectively. In CORA,
reachability analysis of nonlinear systems is based on abstraction. We present abstraction by
linear systems as presented in [18, Section 3.4] and by polynomial systems as presented in [24].
Since the abstraction causes additional errors, the abstraction errors are determined in an over-
approximative way and added as an additional uncertain input so that an over-approximative
computation is ensured.

General nonlinear continuous systems with uncertain parameters and Lipschitz continuity are
considered. In analogy to the previous linear systems, the initial state x(0) can take values from
a set X0 ⊂ Rn and the input u takes values from a set U ⊂ Rm. The evolution of the state x is
defined by the following differential equation:

ẋ(t) = f(x(t), u(t)), x(0) ∈ X0 ⊂ Rn, u(t) ∈ U ⊂ Rm,

where u(t) and f(x(t), u(t)) are assumed to be globally Lipschitz continuous so that the Taylor
expansion for the state and the input can always be computed, a condition required for the
abstraction.

A brief visualization of the overall concept for computing the reachable set is shown in Fig. 19.
As in the previous approaches, the reachable set is computed iteratively for time intervals t ∈
τk = [k r, (k + 1)r] where k ∈ N+. The procedure for computing the reachable sets of the
consecutive time intervals is as follows:

➀ The nonlinear system ẋ(t) = f(x(t), u(t)) is either abstracted to a linear system as shown
in (12), or after introducing z = [xT , uT ]T , to a polynomial system of the form

ẋi = fabstract(x, u) =wi +
1

1!

o∑

j=1

Cijzj(t) +
1

2!

o∑

j=1

o∑

k=1

Dijkzj(t)zk(t)

+
1

3!

o∑

j=1

o∑

k=1

o∑

l=1

Eijklzj(t)zk(t)zl(t) + . . .

(17)

The set of abstraction errors L ensures that f(x, u) ∈ fabstract(x, u)⊕L, which allows the
reachable set to be computed in an over-approximative way.

➁ Next, the set of required abstraction errors L̄ is obtained heuristically.
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Initial set: R(0) = X0, time step: k = 1

Compute system abstraction (linear/polynomial)

Obtain required abstraction errors L̄ heuristically

Compute Rabstract(τk) of ẋ(t) ∈ fabstract(x(t), u(t)) ⊕ L̄

Compute L based on Rabstract(τk)
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Cancellation of redundant reachable sets

Next initial set: R(tk+1), time step: k := k + 1
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Figure 19: Computation of reachable sets – overview.

➂ The reachable set Rabstract(τk) of ẋ(t) ∈ fabstract(x(t), u(t)) ⊕ L̄ is computed.

➃ The set of abstraction errors L is computed based on the reachable set Rabstract(τk).

➄ When L * L̄, the abstraction error is not admissible, requiring the assumption L̄ to be
enlarged. If several enlargements are not successful, one has to split the reachable set and
continue with one more partial reachable set from then on.

➅ If L ⊆ L̄, the abstraction error is accepted and the reachable set is obtained by using the
tighter abstraction error: ẋ(t) ∈ fabstract(x(t), u(t)) ⊕ L.

➆ It remains to increase the time step (k := k+1) and cancel redundant reachable sets that
are already covered by previously computed reachable sets. This decreases the number of
reachable sets that have to be considered in the next time interval.

The necessity of splitting reachable sets is indicated in the workspace outputs using the keyword
split. The ratio of the current abstraction errors to the allowed abstraction errors is indicated
in the workspace outputs using the keyword perfInd. If perfInd >= 1, the reachable set has
to be split.

9.4.1 Method initReach

The method initReach computes the reachable set for a first point in time r and the first
time interval [0, r]. In contrast to linear systems, it is required to call initReach for each time
interval τk since the system is abstracted for each time interval τk by a different abstraction
fabstract(x, u).

The following functions take care of the most relevant computations:

• linReach – computes the reachable set of the abstraction fabstract(x(t), u(t)) ⊕ L̄ and
returns if the initial set has to be split in order to control the abstraction error. The name
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of the function has historical reasons and will change.

• linearize – linearizes the nonlinear system.

• linError mixed noInt – computes the linearization error without use of interval arith-
metic according to [19, Theorem 1].

• linError thirdOrder – computes abstraction errors according to [24, Section 4.1].

• linError – easiest, but also most conservative computation of the linearization error
according to [9, Proposition 1].

9.5 Discrete-time Nonlinear Systems

Unlike all other systems, the class nonlinearSysDT considers discrete time models. In more
detail, the class represents nonlinear discrete time systems, which are defined by the following
equation:

x(k + 1) = f (x(k), u(k)) , x(0) ∈ X0 ⊂ Rn, ∀k : u(k) ∈ U ⊂ Rm

The class provides functionality for simulation as well as for reachable set computation.

9.5.1 Method reach

This method computes the reachable set for the specified time horizon. Since the system evolves
in discrete time, the task of calculating the reachable set is identical to the computation of the
image of the nonlinear function f(·), where the sets Xk and U are the function inputs. Similar
to continuous-time nonlinear systems, CORA applies the conservative linearization technique to
calculate the image of the function. More specifically, we first generate the Taylor series of the
nonlinear function f (x(k), u(k)) up to a certain order p, using the center of the sets Xk and U
as the combined expansion point. For all summands of the Taylor series we compute the set of
possible values for x(k) ∈ Xk and u(k) ∈ Uk. The set-valued summands are then added using
Minkowski addition, which results in an approximation of the image of the function. Finally,
in order to guarantee that the calculated reachable set is an over-approximation, we have to
consider the Lagrange remainder of order p + 1, which we evaluate with interval arithmetics.
There exist some important settings that significantly influence the tightness of the calculated
reachable set:

• options.taylorOrder: Number of considered Taylor series terms p. An increase in the
number of terms usually leads to a tighter reachable set. The maximum value that is
supported by CORA is options.taylorOrder = 3.

• options.errorOrder: Zonotope order to which the set Xk is reduced before the quadratic
or higher order terms of the Taylor series are evaluated. The reduction is necessary since
the evaluation of quadratic or higher order terms for a zonotope results in a large increase
in the number of zonotope generators.

Computing the Minkowski sum as well as the evaluation of quadratic or higher order Taylor
series terms leads to zonotopes with a quickly increasing number of generators. In order to keep
the runtime of the reachability algorithm reasonable, we therefore reduce the zonotope order of
the set Xk after each time step to the user-defined value specified in options.zonotopeOrder.

Note: We have not implemented a dedicated class for computing reachable sets of
linear discrete time systems. Given the linear discrete-time system x(k + 1) =
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Ax(k) + u(k), ∀k : u(k) ∈ U , one can simply obtain the reachable sets us-
ing the following code: R{i + 1} = A ∗ R{i}+ U. A full example can be found under
CORA/examples/contDynamics/linear/example linear reach 05 discreteTime.m.

9.6 Nonlinear Systems with Uncertain Fixed Parameters

The class nonlinParamSys extends the class nonlinearSys by considering uncertain parameters
p:

ẋ(t) = f(x(t), u(t), p), x(0) ∈ XO ⊂ Rn, u(t) ∈ U ⊂ Rm, p ∈ P ⊂ Rp.

The functionality provided is identical to nonlinearSys, except that the abstraction to polyno-
mial systems is not yet implemented.

9.7 Nonlinear Differential-Algebraic Systems

The class nonlinDASys considers time-invariant, semi-explicit, index-1 DAEs. Parametric un-
certainties as demonstrated in Sec. 9.6 have not yet been implemented, but one can consider
uncertain parameters using the existing techniques: for uncertain but fixed parameters one can
define each parameter as a state variable x̃i with the trivial dynamics ˙̃xi = 0 and for time-
varying parameters, one can specify the parameter as an uncertain input. After introducing the
vectors of differential variables x, algebraic variables y, and inputs u, the semi-explicit DAE can
generally be written as

ẋ = f(x(t), y(t), u(t))

0 = g(x(t), y(t), u(t)),

[xT (0), yT (0)]T ∈ R(0), u(t) ∈ U ,
(18)

where R(0) over-approximates the set of consistent initial states and U is the set of possible
inputs. The initial state is consistent when g(x(0), y(0), u(0)) = 0, while for DAEs with an
index greater than 1, further hidden algebraic constraints have to be considered [42, Chapter

9.1]. For an implicit DAE, the index-1 property holds if and only if ∀t : det(∂g(x(t),y(t),u(t))
∂y

) 6= 0,
i.e., the Jacobian of the algebraic equations is non-singular [43, p. 34]. Loosely speaking, the
index specifies the distance to an ODE (which has index 0) by the number of required time
differentiations of the general form 0 = F ( ˙̃x, x̃, u, t) along a solution x̃(t), in order to express ˙̃x
as a continuous function of x̃ and t [42, Chapter 9.1].

To apply the methods presented in the previous section to compute reachable sets for DAEs, an
abstraction of the original nonlinear DAEs to linear differential inclusions is performed for each
consecutive time interval τk. A different abstraction is used for each time interval to minimize
the over-approximation error. Based on a linearization of the functions f(x(t), y(t), u(t)) and
g(x(t), y(t), u(t)), one can abstract the dynamics of the original nonlinear DAE by a linear
system plus additive uncertainty as detailed in [19, Section IV]. This linear system only contains
dynamic state variables x and uncertain inputs u. The algebraic state y is obtained afterwards
by the linearized constraint function g(x(t), y(t), u(t)) as described in [19, Proposition 2].

The nonlinDASys class has the following public properties:

• dim – number of dimensions.

• nrOfConstraints – number of constraints.

• nrOfInputs – number of inputs.

• dynFile – handle to the m-file containing the dynamic function f(x(t), y(t), u(t)).
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• conFile – handle to the m-file containing the constraint function g(x(t), y(t), u(t)).

• jacobian – handle to the m-file containing the Jacobians of the dynamic function and the
constraint function.

• hessian – handle to the m-file containing the Hessians of the dynamic function and the
constraint function.

• thirdOrderTensor – handle to the m-file containing the third order tensors of the dynamic
function and the constraint function.

• linError – handle to the m-file containing the Lagrangian remainder.

• other – other information.

10 Hybrid Dynamics

In CORA, hybrid systems are modeled by hybrid automata. Besides a continuous state x,
there also exists a discrete state v for hybrid systems. The continuous initial state may take
values within continuous sets while only a single initial discrete state is assumed without loss of
generality7. The switching of the continuous dynamics is triggered by guard sets. Jumps in the
continuous state are considered after the discrete state has changed. One of the most intuitive
examples where jumps in the continuous state can occur is the bouncing ball example (see Sec.
15.2.1), where the velocity of the ball changes instantaneously when hitting the ground.

The formal definition of the hybrid automaton is similarly defined as in [37]. The main difference
is the consideration of uncertain parameters and the restrictions on jumps and guard sets. A
hybrid automaton HA = (V, v0,X , X 0,U ,P, inv, T, g, h, f), as it is considered in CORA, consists
of:

• the finite set of locations V = {v1, . . . , vξ} with an initial location v0 ∈ V.
• the continuous state space X ⊆ Rn and the set of initial continuous states X 0 such that

X 0 ⊆ inv(v0).

• the continuous input space U ⊆ Rm.

• the parameter space P ⊆ Rp.

• the mapping8 inv: V → 2X , which assigns an invariant inv(v) ⊆ X to each location v.

• the set of discrete transitions T ⊆ V ×V. A transition from vi ∈ V to vj ∈ V is denoted by
(vi, vj).

• the guard function g : T → 2X , which associates a guard set g((vi, vj)) for each transition
from vi to vj , where g((vi, vj)) ∩ inv(vi) 6= ∅.

• the jump function h : T×X → X , which returns the next continuous state when a transition
is taken.

• the flow function f : V ×X ×U ×P → Rn, which defines a continuous vector field for the
time derivative of x: ẋ = f(v, x, u, p).

7In the case of several initial discrete states, the reachability analysis can be performed for each discrete state
separately.

82X is the power set of X .
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The invariants inv(v) and the guard sets g((vi, vj)) are modeled by polytopes. The jump function
is restricted to a linear map

x′ = K(vi,vj) x+ l(vi,vj), (19)

where x′ denotes the state after the transition is taken and K(vi,vj) ∈ Rn×n, l(vi,vj) ∈ Rn are
specific for a transition (vi, vj). The input sets Uv are modeled by zonotopes and are also
dependent on the location v. Note that in order to use the results from reachability analysis
of nonlinear systems, the input u(t) is assumed to be locally Lipschitz continuous. The set of
parameters Pv can also be chosen differently for each location v.

The evolution of the hybrid automaton is described informally as follows. Starting from an
initial location v(0) = v0 and an initial state x(0) ∈ X 0, the continuous state evolves according
to the flow function that is assigned to each location v. If the continuous state is within a
guard set, the corresponding transition can be taken and has to be taken if the state would
otherwise leave the invariant inv(v). When the transition from the previous location vi to the
next location vj is taken, the system state is updated according to the jump function and the
continuous evolution within the next invariant.

Because the reachability of discrete states is simply a question of determining if the continuous
reachable set hits certain guard sets, the focus of CORA is on the continuous reachable sets.
Clearly, as for the continuous systems, the reachable set of the hybrid system has to be over-
approximated in order to verify the safety of the system. An illustration of a reachable set of a
hybrid automaton is given in Fig. 20.

initial set

reachable set guard sets

guard sets

jump

etc.

invariant

unsafe set

x1

x2

location v1 location v2

Figure 20: Illustration of the reachable set of a hybrid automaton.

10.1 Simulation of Hybrid Automata

While the reachable set computation of hybrid systems as performed in CORA is described in
several publications, see e.g., [18,44,45], the simulation of hybrid systems is nowhere documented.
For this reason, the simulation is described in this subsection in more detail. The simulation is
performed by applying the following steps:

➀ Preparation 1: Guard sets and invariants can be specified by any set representation that
CORA offers. For simulation purposes, all set representations are transformed into a
halfspace representation as illustrated in Fig. 12(b). This is performed by transforming
intervals, zonotopes, and zonotope bundles to a polytope, see Tab. 1. Next, of all polytopes
the halfspace generation is obtained. Guards that are already defined as halfspaces do not
have to be converted, of course. In the end, one obtains a set of halfspaces for guard sets
and the invariant for each location. The result for one location is shown in Fig. 21.
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➁ Preparation 2: The ordinary differential equation (ODE) solvers of MATLAB can be
connected to so-called event functions. If during the simulation, one of the event functions
has a zero crossing, MATLAB stops the simulation and goes forward and backward in
time in an iterative way to determine the zero crossing up to some numerical precision.
It can be set if the ODE solver should react to a zero crossing when the event function
changes from negative to positive (direction=+1), the other way round (direction=-1),
or in any direction (direction=0). It can also be set if the simulation should stop after a
zero crossing or not.

CORA automatically generates an event function for each halfspace, where the simulation
is stopped when the halfspace of the invariant is left (direction=+1) and stopped for
halfspaces of guard sets when the halfspace is entered (direction=-1). In any case, the
simulation will stop.

➂ During the simulation, the integration of the ODE stops as soon as any event function is
triggered. This, however, does not necessarily mean that a guard set is hit as shown in
Fig. 21(b). Only when the state is on the edge of a guard set, the integration is stopped
for the current location. Otherwise, the integration is continued. Please note that it is
not sufficient to check whether a state during the simulation enters a guard set, since this
could cause missing a guard set as shown in Fig. 22.

➃ After a guard set is hit, the discrete state changes according to the transition function and
the continuous state according to the jump function as described above. Currently, only
urgent semantics is implemented in CORA, i.e., a transition is taken as soon as a guard
set is hit, although the guard might model non-deterministic switching. The simulation
continues with step ➂ in the next location until the time horizon is reached.

10.2 Hybrid Automaton

A hybrid automaton is implemented as a collection of locations. We mainly support the
following methods for hybrid automata:

• hybridAutomaton – constructor of the class.

• plot – plots the reachable set of the hybrid automaton.

• reach – computes the reachable set of the hybrid automaton.

• simulate – computes a hybrid trajectory of the hybrid automaton.

10.3 Location

Each location consists of:

• contDynamics – specified by a continuous dynamics of Sec. 9.

• id – unique number of the location.

• invariant – specified by a set representation of Sec. 7.

• name – saved as a string describing the location.

• transitions – cell array of objects of the class transition.

We mainly support the following methods for locations:

• display – displays the parameters of the location in the MATLAB workspace.
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(a) Considered location.
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initial state

first halfspace hit (not in guard set)

second halfspace hit (in guard set)

halfspace of guard set:

halfspace of invariant:

part belonging to halfspace

(b) Simulation using halfspaces.

Figure 21: Illustration of the algorithm for simulating a hybrid automaton.

• enclosePolytopes – encloses a set of polytopes using different over-approximating zono-
topes.

• guardIntersect – intersects the reachable sets with potential guard sets and returns
enclosing zonotopes for each guard set.

• location – constructor of the class.

• potInt – determines which reachable sets potentially intersect with guard sets of a location.

• reach – computes the reachable set for the location.

• simulate – produces a single trajectory that numerically solves the system within the
location starting from a point rather than from a set.

10.4 Transition

Each transition consists of

• guard – specified by a set representation of Sec. 7.

• inputLabel – input event to communicate over events.

61



10 HYBRID DYNAMICS

x1
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invariant

guard set

initial state
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Figure 22: Guard intersections can be missed when one only checks whether intermediate states
are in any guard set.

• outputLabel – output event to communicate over events.

• reset – struct containing the information for a linear reset.

• target – id of the target location when the transition occurs.

We mainly support the following methods for transitions:

• display – displays the parameters of the transition in the MATLAB workspace.

• reset – computes the reset map after a transition occurs (also called ’jump function’).

10.5 Parallel Hybrid Automata

Complex systems can often be modeled as a connection of multiple distinct subcomponents,
where each of these subcomponents represents a hybrid automaton. A naive approach to analyze
these type of systems would be to construct a flat hybrid automaton for the overall system from
the hybrid automaton models of the subcomponents (parallel composition, see e.g., [46, Def. 2.9]).
This technique however requires calculating all possible combinations of subsystem locations,
and therefore suffers from the curse of dimensionality. Consider for example a system consisting
of 15 subcomponents, where each subcomponent has 10 discrete locations. The flat hybrid
automaton for this system would consist of 1015 discrete locations.

This exponential increase in the number of locations can be avoided if the overall system is
modeled as a parallel hybrid automaton. In this case, the system is described by a list of
hybridAutomaton objects representing the subcomponents and by connections between these
components. The flow function, the invariant set, and the guard sets for a location of the
composed system are computed on-demand as soon as a simulated solution or the reachable set
enters the corresponding part of the state space. Since usually only a small part of the state
space is explored by simulation or reachability analysis, it is possible to significantly reduce the
computational costs of the analysis if the system is modeled as a parallel hybrid automaton.

Parallel hybrid automata are implemented in CORA by the class parallelHybridAutomaton.
For better illustration of the required information, we introduce the example presented in Fig. 23
consisting of three components. Since the modeling of hybrid automata is tedious and error-
prone, we provide a method to read models of parallel hybrid automata using the SpaceEx
format [47]. For modeling and modifying SpaceEx models, one can use the freely available
SpaceEx model editor downloadable from spaceex.imag.fr/download-6. Details on converting
SpaceEx models to models as defined in this section can be found in Sec. 14. To manually
construct a parallelHybridAutomaton object, three arguments are required:

• components – list containing all subcomponents of the system. Each subcomponent has
to be represented as a hybridAutomaton object
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• stateBinds – list containing vectors that define the relation between the states of the
subcomponents and the states of the composed system. In the example shown in Fig. 23,
the full system has ten states, where the first component describes the evolution of the
first three states x1, x2, x3, the second component contains the states x4, x5, x6, x7, x8,
and the third one the states x9, x10. In CORA, this can be specified as follows:

1 stateBinds{1} = [1; 2; 3]; % states of component 1

2 stateBinds{2} = [4; 5; 6; 7; 8]; % states of component 2

3 stateBinds{3} = [9; 10]; % states of component 3

• inputBinds – list containing matrices that describe the connections between the subcom-
ponents. Each matrix has two columns: the first column represents the component the
signal comes from and the second column the output number, e.g., [2, 3] refers to output 3
of component 2. When an input to a component is also an input to the composed system,
we use index 0, e.g., [0, 1]. For each input of the subcomponent, we specify a new row
and the row number corresponds to the input index of the considered component. In the
example shown in Fig. 23, the input binds have to be specified as follows:

1 inputBinds{1} = [[0 2];[0 1];[2 1]]; % input connections for component 1

2 inputBinds{2} = [[0 1];[0 2]]; % input connections for component 2

3 inputBinds{3} = [[1 2];[2 2]]; % input connections for component 3

Let us briefly discuss the solution for component 1, which has three inputs and thus
inputBinds{1} has three rows: The first input (first row) is the second input of the
composed system; the second input is the first input of the composed system; and the
third input is the first input of component 2.

Component 1

(3 states)

Component 2

(5 states)

Component 3

(2 states)

Figure 23: Example of a parallel hybrid automaton that consists of three subcomponents.

In addition to the general options for reachability analysis that are listed in Section 12, the
parallelHybridAutomaton class requires some additional settings. These additional options
are necessary to specify the system input for the composed system. CORA supports global and
location dependent inputs. In the latter case, the subcomponent on whose location the input
depends on has to be specified. All required additional settings for parallel hybrid automata are
listed in the options struct as shown below:

• options.inputCompMap – vector specifying which system inputs are global (value 0) and
which are location dependent (index of corresponding subcomponent). The value [0 3 0]
for example indicates that the system inputs one and three are global, whereas the system
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input two is different for each location of subcomponent 3.

• options.uCompLoc – cell-array containing the vector of system inputs for all locations of
each subcomponent. Only necessary for simulation.

• options.UCompLoc – cell-array containing the set of uncertain inputs for all locations of
each subcomponent. Necessary for reachability analysis and random simulation.

• options.uCompLocTrans – cell-array containing the vector with the offset of the input set
for all locations of each subcomponent. Necessary for reachability analysis and random
simulation.

• options.uGlob – vector specifying the global system inputs. Only necessary for simula-
tion.

• options.UGlob – set of uncertain global system inputs. Necessary for reachability analysis
and random simulation.

• options.uGlobTrans – vector specifying the offset for the uncertain global system inputs.
Necessary for reachability analysis and random simulation.

11 Abstraction to Discrete Systems

11.1 State Space Partitioning

It is sometimes useful to partition the state space into cells, for instance, when abstracting
a continuous stochastic system by a discrete stochastic system. CORA supports axis-aligned
partitioning using the class partition.

We mainly support the following methods for partitions:

• cellCenter – returns a cell array of cell center positions of the partition segments whose
indices are given as input.

• cellIndices – returns cell indices given a set of cell coordinates.

• cellIntervals – returns a cell array of interval objects corresponding to the cells specified
as input.

• cellPolytopes – returns polytope of selected cells.

• cellSegments – returns cell coordinates given a set of cell indices.

• cellZonotopes – returns zonotopes of selected cells.

• display – displays the parameters of the partition in the MATLAB workspace.

• exactIntersectingCells – finds the exact cells of the partition that intersect a set P,
and the proportion of P that is in each cell.

• intersectingCells – returns the cells possibly intersecting with a continuous set, over-
approximatively, by overapproximating the convex set as a multidimensional interval.

• nrOfCells – returns the number of cells of the partition.

• findSegments – returns segment indices intersecting with a given interval hull.

• nrOfStates – returns the number of discrete states of the partition.

• partition – constructor of the class.
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• plot – plots the partition.

The methods for the partition class have changed from the 2016 to the 2018 version. A table
showing the difference can be found in Appendix A.

11.2 Abstraction to Markov Chains

The main idea of the Markov chain abstraction is to analyze a dynamic system probabilistically
by a Markov chain instead of making use of the original system dynamics. The Markov chain
abstraction has to be performed so that it approximates the behavior of the original system with
appropriate accuracy. The abstraction can be applied to both continuous and hybrid systems.
Since Markov chains are stochastic systems with a discrete state space, the continuous state
space of the original state and input space has to be discretized for the abstraction as presented
in Sec. 11.1. This implies that the number of states of the Markov chain grows exponentially with
the dimension of the continuous state space. Thus, the presented abstraction is only applicable
to low dimensional systems of typically up to 4 continuous state variables.

The following definition of Markov chains is adapted from [48]: A discrete time Markov chain
MC = (Y, p̂0,Φ) consists of

• The countable set of locations Y ⊂ N>0.

• The initial probability p̂0i = P (z(0) = i), with random state z : Ω → Y , where Ω is the set
of elementary events and P () is an operator determining the probability of an event.

• the transition matrix Φij = P (z(k + 1) = i|z(k) = j) so that p̂(k + 1) = Φp̂(k).

Clearly, the Markov chain fulfills the Markov property, i.e., the probability distribution of the
future time step p̂(k + 1) depends only on the probability distribution of the current time step
p̂(k). If a process does not fulfill this property, one can always augment the discrete state space
by states of previous time steps, allowing the construction of a Markov chain with the new
state z∗(k)T =

[
z(k)T , z(k − 1)T , z(k − 2)T , . . .

]
. An example of a Markov chain is visualized in

Fig. 24 by a graph whose nodes represent the states 1, 2, 3 and whose labeled arrows represent
the transition probabilities Φij from state j to i.
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Figure 24: Exemplary Markov chain with 3 states.

The relation of the discrete time step k and the continuous time is established by introducing
the time increment τ ∈ R+ after which the Markov chain is updated according to the transition
matrix Φ. Thus, the continuous time at time step k is tk = k · τ . The generation of a Markov
chain from a continuous dynamics is performed as described in [18, Sec. 4.3].

We mainly support the following methods for Markov chains:
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• build – builds the transition matrices of the Markov chains using simulation.

• build reach – builds the transition matrices of the Markov chains using reachability
analysis.

• convertTransitionMatrix – converts the transition matrix of a Markov-chain such that
it can be used for an optimized update as presented in [49].

• markovchain – constructor of the class.

• plot – generates 3 plots of a Markov chain: 1. sample trajectories; 2. reachable cells for
the final time; 3. reachable cells for the time interval.

• plot reach – generates 3 plots of a Markov chain: 1. continuous reachable set together
with sample trajectories; 2. reachable cells for the final time; 3. reachable cells for the
time interval.

• plotP – plots the 2D probability distribution of a Markov chain.

11.3 Stochastic Prediction of Road Vehicles

An important application of abstracting hybrid dynamics to Markov chains is the probabilistic
prediction of traffic participants as presented in e.g. [49, 50]. The probabilistic information
allows not only to check if a planned path of an autonomous vehicle may result in a crash, but
also with which probability. Consequently, possible driving strategies of autonomous cars can
be evaluated according to their safety. Traffic participants are abstracted by Markov chains
as presented in Sec. 11.2. There are three properties which are in favor of the Markov chain
approach: The approach can handle the hybrid dynamics of traffic participants, the number of
continuous state variables (position and velocity) is low, and Markov chains are computationally
inexpensive when they are not too large.

We provide all numerical examples presented in [18, Sec. 5]. Please note that the code is not
as clean as for the core CORA classes since this part of the code is not a foundation for other
implementations, but rather a demonstration of probabilistic predictions of road traffic. To
replicate the braking scenario in [18, Sec. 5], perform the following steps:

1. Run /discrDynamics/ProbOccupancyPrediction/intersection/

start intersectionDatabase to obtain an intersection database. The result is a struc-
ture fArray. Executing this function can take several hours.

2. Run start carReach to compute the Markov chain of a traffic participant. You have to
select the corresponding fArray file to make sure that the segment length of the path is
consistent. The type of traffic participant is exchanged by exchanging the loaded hybrid
automaton model, e.g., to load the bicycle model use [HA,...] =initBicycle(fArray.

segmentLength). Finally, save the resulting probabilistic model. Executing this function
can take several hours.

3. (optional) Instead of computing the Markov chain by simulations, one can compute it
using reachability analysis by using carReach reach.

4. Select the scenario; each scenario requires to load a certain amount of MC models. The
following set of scenarios are currently available:

• braking

• intersectionCrossing

• knownBehavior
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• laneChange

• merging

• overtaking

• straightVScurved

As an example, the outcome of the braking scenario is described subsequently. The interaction
between vehicles driving braking in a lane is demonstrated for 3 cars driving one after the other.
The cars are denoted by the capital letters A, B, and C, where A is the first and C the last
vehicle in driving direction. Vehicle A is not computed based on a Markov chain, but predicted
with a constant velocity of 3 m/s so that the faster vehicles B and C are forced to brake. The
probability distributions for a selected time interval is plotted in Fig. 25. For visualization
reasons, the position distributions are plotted in separate plots, although the vehicles drive in
the same lane. Dark regions indicate high probability, while bright regions represent areas of
low probability. In order to improve the visualization, the colors are separately normalized for
each vehicle.
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Figure 25: Probabilistic occupancy prediction of the braking scenario.

12 Options for Reachability Analysis

Most parameters for the computation of reachable sets are controlled by a struct called options.
Please note that in most cases only a fraction of these options have to be specified. A good
guidance on which options are required is provided by the examples in the folder /examples.
In the next release we will provide user guidance on which options have to be set for which
problem. The most important fields of the options struct are:

General

• R0 – initial set of states.

• reductionTechnique –sets the reduction technique. The list of techniques can be found
in /contSet/zonotope/reduce.m.

67



12 OPTIONS FOR REACHABILITY ANALYSIS

• taylorTerms – considered Taylor terms for the exponential matrix.

• saveOrder – maximum order of the zonotopes that are returned as output arguments
(optional).

• tFinal – final time of the analysis.

• timeStep – step size tk+1 − tk.

• tStart – start time of the analysis.

• u – constant input for simulations.

• U – uncertain input set Ũ∆.

• uTrans/uTransVec – uTrans: translation of the uncertain input set Ũ∆; uTransVec: vary-
ing uc for each time step: translation of the uncertain input set Ũ∆.

• x0 – initial state.

• zonotopeOrder – maximum order of zonotopes.

Linear systems

• linAlg – flag to choose the wrapping-free approach in [40] (set options.linAlg = 1) or
the approach in [17] (set options.linAlg = 2 or do not specify options.linAlg; default
setting) for reachability analysis of linear systems.

• originContained – flag whether the origin is contained in the set of uncertain inputs Ũ
(1: yes, 0: no).

• outputOrder – maximum order of the zonotopes that represent the set of system ouputs
y (optional).

Nonlinear System

• advancedLinErrorComp – flag to enable advanced linearization error computation (1: on,
0: off).

• errorOrder – maximum zonotope order for the computation of nonlinear maps.

• intermediateOrder – order up to which no interval methods are used in matrix set com-
putations.

• maxError – maximum allowed abstraction errors before a reachable set is split.

• reductionInterval – number of time steps after which redundant reachable sets are
removed.

• simplify – method used to simplify the algebraic expressions in the Lagrange remainder
term (’none’, ’simplify’ or ’collect’, optional).

• tensorOrder – maximum order up to which tensors are considered in the abstraction of
the system.

• tensorParallel – flag to enable evaluation of the Lagrange remainder term with parallel
execution (1: on, 0: off, optional).

• lagrangeRem.method – method used to evaluate the Lagrange remainder term (’interval’,
’taylorModel’ or ’zoo’, optional).
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Nonlinear System (Lagrange Remainder)

• lagrangeRem.method – method used to evaluate the Lagrange remainder term (’interval’,
’taylorModel’ or ’zoo’)

• lagrangeRem.zooMethods – cell-array containing the range bounding techniques from
which the zoo-object is created.

• lagrangeRem.maxOrder – maximum polynomial degree of the monomials in the polyno-
mial part of the Taylor model (optional).

• lagrangeRem.optMethod – method used to calculate the bounds of the Talyor model
objects (’int’, ’bnb’, ’bnbAdv’ or ’linQuad’, optional).

• lagrangeRem.tolerance – minimum absolute value of the monomial coefficients in the
polynomial part of the Taylor model (optional).

• lagrangeRem.eps – termination tolerance ǫ for the branch and bound algorithm and
the algorithm based on the Linear Dominated Bounder and the Quadratic Fast Bounder
(optional).

Hybrid Systems

• enclosureEnables – array containing the identifiers of the methods that are used to
approximate the intersections with the guard set.

• isHyperplaneMap – flag specifying if the guard-mapping technique is used to calculate the
intersections with the guards (1: on, 0: off).

• startLoc – ID of the location in which the initial set is located.

• finalLoc – execution is terminated if this location is reached.

• timeStepLoc – cell-array containing the time step for each location of the hybrid system.

• uLoc – cell-array containing the constant input for simulations for each location.

• Uloc – cell-array containing the uncertain input set Ũ∆ for each location.

• uLocTrans – cell-array containing the translation of the uncertain input set Ũ∆ for each
location.

13 Unit Tests

To better ensure that all functions in CORA work as they should, CORA contains a number of
unit tests. Those unit tests are executed by two different test suits:

• runTestSuite: This test suite should always be executed after installing CORA or updat-
ing MATLAB/CORA/MPT. This test suite runs the basic tests and should be completed
after several minutes. This test suite executes all files in the folder unitTests whose
function name starts with test .

• runTestSuite INTLAB: This test suite compares the interval arithmetic results with those
of INTLAB. To successfully execute those tests, INTLAB has to be installed. The tests
are randomized and for each function, thousands of samples are generated. Simple, non-
randomized tests for the interval arithmetic are already included in runTestSuite. This
test suite executes all files in the folder unitTests whose function name starts with
testINTLAB .
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14 Loading Simulink and SpaceEx Models

A new feature of CORA 2018 is to load SpaceEx models. This not only has the advantage
that one can use the SpaceEx model editor to create models for CORA (see Sec. 14.1.2), but
also makes it possible to indirectly load Simulink models through the SL2SX converter [51, 52]
(see Sec. 14.1.1). We also plan to make the conversion to CORA available within HYST in the
future [53]. We first present how to create SpaceEx models and then how one can convert them
to CORA models.

14.1 Creating SpaceEx Models

We present two techniques to create SpaceEx models: a) converting Simulink models to SpaceEx
and b) creating models using the SpaceEx model editor.

14.1.1 Converting Simulink Models to SpaceEx Models

The SL2SX converter generates SpaceEx models from Simulink models and can be downloaded
from github.com/nikos-kekatos/SL2SX.

After downloading the SL2SX converter or cloning it using the command

git clone https://github.com/nikos-kekatos/SL2SX.git,

one can run the tool using the Java Runtime Environment, which is pre-installed on most
systems. You can check whether it is pre-installed by typing java -version in your terminal.
To run the tool, type java -jar SL2SX.jar. One can also run the converter directly in the
MATLAB command window by typing

system(sprintf(’java -jar path to converter/SL2SX terminal.jar %s’, ...

’path to model/model name.xml’))

after adding the files of the converter to the MATLAB path, where the placeholders
path to converter and path to model represent the corresponding file paths.

To use the converter, you have to save your Simulink model in XML format by typing in the
MATLAB command window:

load_system(’model_name’)

save_system(’model_name.slx’,’model_name.xml’,’ExportToXML’,true)

When the model is saved as *.mdl instead of *.slx, please replace ’model name.slx’ by
’model name.mdl’ above. A screenshot of an example to save a model in XML format together
with the corresponding Simulink model of a DC motor is shown in Fig. 26.

Please note that the SL2SX converter cannot convert any Simulink model to SpaceEx. A detailed
description of limitations can be found in [51,52].

14.1.2 SpaceEx Model Editor

To create SpaceEx models in an editor, one can use the SpaceEx model editor downloadable
from
spaceex.imag.fr/download-6.
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Figure 26: Screenshot of MATLAB/Simulink showing how to save Simulink models in XML
format.

To use the editor, save the file (e.g., spaceexMOE.0.9.4.jar) and open a terminal. To execute
the model editor, type java -jar filename.jar and in the case of the example file, type java
-jar spaceexMOE.0.9.4.jar. If it does not work, you might want to check if you have java
installed: type java -version in your terminal.

A screenshot of the model editor can be found in Fig. 27. Further information on the SpaceEx
modeling language is described in [47] and further documents can be downloaded:
spaceex.imag.fr/documentation/user-documentation.

Examples of SpaceEx models can be loaded in CORA from /models/SpaceEx.

14.2 Converting SpaceEx Models

To load SpaceEx models (stored as XML files) into CORA, one only has to execute a simple
command:

spaceex2cora(’model.xml’);

This command creates a CORA model in /models/SpaceExConverted under a folder with
the identical name as the SpaceExModel. If the SpaceEx model contains nonlinear differential
equations, additional dynamics files are stored in the same folder. Below we present as an
example the converted model of the bouncing ball model from SpaceEx:

1 function HA = bball(˜)

2

3

4 %% Generated on 07-Aug-2018

5
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Figure 27: Screenshot of the SpaceEx model editor showing the bouncing ball example.

6 %---------------Automaton created from Component ’system’------------------

7

8 %% Interface Specification:

9 % This section clarifies the meaning of state & input dimensions

10 % by showing their mapping to SpaceEx variable names.

11

12 % Component 1 (system.ball):

13 % state x := [x; v]

14 % input u := [uDummy]

15

16 %-------------------------Component system.ball----------------------------

17

18 %-----------------------------State always---------------------------------

19

20 %% equation:

21 % x’ == v & v’ == -g

22 dynA = ...

23 [0,1;0,0];

24 dynB = ...

25 [0;0];

26 dync = ...

27 [0;-1];

28 dynamics = linearSys(’linearSys’, dynA, dynB, dync);

29

30 %% equation:

31 % x >= 0

32 invA = ...

33 [-1,0];

34 invb = ...

35 [-0];

36 invOpt = struct(’A’, invA, ’b’, invb);

37 inv = mptPolytope(invOpt);

38

39 trans = {};

40 %% equation:

41 % v’ := -c*v
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42 resetA = ...

43 [1,0;0,-0.75];

44 resetb = ...

45 [0;0];

46 reset = struct(’A’, resetA, ’b’, resetb);

47

48 %% equation:

49 % x <= eps & v < 0

50 guardA = ...

51 [1,0;0,1];

52 guardb = ...

53 [-0;-0];

54 guardOpt = struct(’A’, guardA, ’b’, guardb);

55 guard = mptPolytope(guardOpt);

56

57 trans{1} = transition(guard, reset, 1, ’dummy’, ’names’);

58

59 loc{1} = location(’S1’,1, inv, trans, dynamics);

60

61

62

63 HA = hybridAutomaton(loc);

64

65

66 end

At the beginning of each automatically created model, we list the state and inputs so that the
created models can be interpreted more easily using the variable names from the SpaceEx model.
These variable names are later replaced by the state vector x and the input vector u to make
use of matrix multiplications in MATLAB for improved efficiency. Next, the dynamic equations,
guard sets, invariants, transitions, and locations are created (the semantics of these components
is explained in Sec. 10).

A hand-written version of the bouncing ball example can be found in Sec. 15.2.1 for comparison.
How to use the automatically generated bouncing ball model is shown in Sec. 15.2.2.

Remarks

1. The converter makes heavy use of operations of strings, which have been modified since
MATLAB 2017a. We have developed the converter using MATLAB 2017b. It is thus
recommended to update to the latest MATLAB version to use the converter. It cannot be
used if you have a version older than 2017a.

2. It is not yet possible to convert all possible models that can be modeled in SpaceEx. This
is mostly due to unfinished development of the converter. Some cases, however, are due
to the less strict hybrid automaton definition used by SpaceEx, which allows for models
that currently cannot be represented in CORA. Hybrid models (see Sec. 10) that do not
violate the following restrictions can be converted:

• Uncertain parameters: CORA supports models with varying parameters, but our
converter cannot produce such models yet. Parameters must be fixed in the SpaceEx
model or will be treated as time-varying inputs. This may result in nonlinear differ-
ential equations even when the system is linear time-varying.

• Invariants & Guards: CORA requires invariant & guard sets to be modeled by
linear inequalities only depending on continuous state variables, resulting in polyhe-
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drons in state space. Expressions violating this requirement are ignored and trigger

a warning. Furthermore, set definitions must be provided in the format a(1)
T
x ≤ b(1)

& a(2)
T
x ≤ b(2) & ... & a(q)

T
x ≤ b(q), where a(i) ∈ Rn is a vector, x ∈ Rn is the state,

and b(i) ∈ R is a scalar. The inequalities can also be replaced by equalities to obtain
polyhedra which are not full-dimensional. Due to current limitations of our parser
even the use of parentheses can cause format errors.

• Reset Functions: Resets have to be linear as well and can only depend on the
continuous state vector: x′ = Cx+ d, where x′ is the state after the reset, C ∈ Rn×n,
x ∈ Rn is the state before the reset, and d ∈ Rn. Resets violating this restriction are
ignored and trigger a warning.

• Local Variables: Our parser can currently not detect local variables that are defined
in bound components but not in the root component (detailed definitions of local
variables, bound components, and root components can be found in [54]). Therefore
all relevant variables are required to be non-local in all components.

• Labels: Synchronization labels (variables of type label) are ignored. Neither our
parser nor CORA currently implements any synchronized automaton composition.

3. SX2CORA does not keep all inputs of the SpaceEx Model, if they have no effect on the
generated model (i.e., inputs/uncertain parameters that were only used in invariants/-
guards/resets).

4. Variable names i j I J are renamed to ii jj II JJ, since the MATLAB Symbolic Toolbox
would interpret them as the imaginary number. Variables such as ii III JJJJ are also
lengthened by a letter to preserve name uniqueness.

Optional arguments To better control the conversion, one can use additional arguments:

spaceex2cora(’model.xml’,’rootID’,’outputName’,’outputDir’);

The optional arguments are:

• ’rootID’ – ID of SpaceEx component to be used as root component (specified as a string).

• ’outputName’ – name of the generated CORA model (specified as a string).

• ’outputDir’ – path to the desired output directory where all generated files are stored
(specified as a string).

The implementation of the SX2CORA converter is described in detail in Appendix B.

15 Examples

This section presents a variety of examples that have been published in different papers. For
each example, we provide a reference to the paper so that the details of the system can be
studied there. The focus of this manual is on how the examples in the papers can be realized
using CORA—this, of course, is not shown in scientific papers due to space restrictions. The
examples are categorized along the different classes for dynamic systems realized in CORA.

All subsequent examples can handle uncertain inputs. Uncertain parameters can be realized
using different techniques:
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1. Introduce constant parameters as additional states and assign the dynamics ẋi = 0 to
them. The disadvantage is that the dimension of the system is growing.

2. Introduce time-varying parameters as additional uncertain inputs.

3. Use specialized functions in CORA that can handle uncertain parameters.

It is generally advised to use the last technique, but there is no proof that this technique always
provides better results compared to the other techniques.

15.1 Continuous Dynamics

15.1.1 Linear Dynamics

For linear dynamics, a simple academic example from [18, Sec. 3.2.3] is used with not much focus
on a connection to a real system. However, since linear systems are solely determined by their
state and input matrix, adjusting this example to any other linear system is straightforward.
Here, the system dynamics is

ẋ =









−1 −4 0 0 0
4 −1 0 0 0
0 0 −3 1 0
0 0 −1 −3 0
0 0 0 0 −2









x+ u(t), x(0) ∈









[0.9, 1.1]
[0.9, 1.1]
[0.9, 1.1]
[0.9, 1.1]
[0.9, 1.1]









, u(t) ∈









[0.9, 1.1]
[−0.25, 0.25]
[−0.1, 0.1]
[0.25, 0.75]

[−0.75,−0.25]









.

The MATLAB code that implements the simulation and reachability analysis of the linear
example is (the function is modified from the original file to better fit in this manual; line
numbers after the first line jump due to the removed function description):

1 function example_linear_reach_01_5dim()

31

32 dim=5;

33

34 %set options --------------------------------------------------------------

35 options.tStart=0; %start time

36 options.tFinal=5; %final time

37 options.x0=ones(dim,1); %initial state for simulation

38 options.R0=zonotope([options.x0,0.1*eye(length(options.x0))]); %initial set

39

40 options.timeStep=0.04; %time step size for reachable set computation

41 options.taylorTerms=4; %number of taylor terms for reachable sets

42 options.zonotopeOrder=200; %zonotope order

43 options.originContained=0;

44 options.reductionTechnique=’girard’;

45

46 uTrans=[1; 0; 0; 0.5; -0.5];

47 options.uTrans=uTrans; %center of uncertain inputs

48 options.U=0.5*zonotope([zeros(5,1),diag([0.2, 0.5, 0.2, 0.5, 0.5])]); %input

49 %--------------------------------------------------------------------------

50

51

52

53 %specify continuous dynamics-----------------------------------------------

54 A=[-1 -4 0 0 0; 4 -1 0 0 0; 0 0 -3 1 0; 0 0 -1 -3 0; 0 0 0 0 -2];

55 B=1;

56 fiveDimSys=linearSys(’fiveDimSys’,A,B); %initialize system
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57 %--------------------------------------------------------------------------

58

59 %compute reachable set using zonotopes

60 tic

61 Rcont = reach(fiveDimSys, options);

62 tComp = toc;

63 disp([’computation time of reachable set: ’,num2str(tComp)]);

64

65 %create random simulations; RRTs would provide better results, but are

66 %computationally more demanding

67 runs = 60;

68 fracV = 0.5;

69 fracI = 0.5;

70 changes = 6;

71 simRes = simulate_random(fiveDimSys, options, runs, fracV, fracI, changes);

72

73 %plot results--------------------------------------------------------------

74 for plotRun=1:2

75 % plot different projections

76 if plotRun==1

77 dims=[1 2];

78 elseif plotRun==2

79 dims=[3 4];

80 end

81

82 figure;

83 hold on

84

85 %plot reachable sets

86 for i=1:length(Rcont)

87 plotFilled(Rcont{i},dims,[.8 .8 .8],’EdgeColor’,’none’);

88 end

89

90 %plot initial set

91 plot(options.R0,dims,’w-’,’lineWidth’,2);

92

93 %plot simulation results

94 for i=1:length(simRes.t)

95 plot(simRes.x{i}(:,dims(1)),simRes.x{i}(:,dims(2)),’Color’,[0 0 0]);

96 end

97

98 %abel plot

99 xlabel([’x_{’,num2str(dims(1)),’}’]);

100 ylabel([’x_{’,num2str(dims(2)),’}’]);

101 end

102 %--------------------------------------------------------------------------

The reachable set and the simulation are plotted in Fig. 28 for a time horizon of tf = 5.

15.1.2 Linear Dynamics with Uncertain Parameters

For linear dynamics with uncertain parameters, we use the transmission line example from [21,
Sec. 4.5.2], which can be modeled as an electric circuit with resistors, inductors, and capacitors.
The parameters of each component have uncertain values as described in [21, Sec. 4.5.2]. This
example shows how one can better take care of dependencies of parameters by using matrix
zonotopes instead of interval matrices.
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Figure 28: Illustration of the reachable set of the linear example. The white box shows the
initial set and the black lines show simulated trajectories.

The MATLAB code that implements the simulation and reachability analysis of the linear
example with uncertain parameters is (the function is modified from the original file to better fit
in this manual; line numbers after the first line jump due to the removed function description):

1 function example_linearParam_reach_01_rlc_const()

32

33 %init: get matrix zonotopes of the model

34 [matZ_A,matZ_B] = initRLC_uTest();

35 matI_A = intervalMatrix(matZ_A);

36

37 %get dimension

38 dim=matZ_A.dim;

39

40 %compute initial set

41 %specify range of voltages

42 u0 = intervalMatrix(0,0.2);

43

44 %compute inverse of A

45 intA = intervalMatrix(matZ_A);

46 invAmid = inv(mid(intA.int));

47

48 %compute initial set

49 intB = intervalMatrix(matZ_B);

50 R0 = invAmid*intB*u0 + intervalMatrix(0,1e-3*ones(dim,1));

51

52 %convert initial set to zonotope

53 R0 = zonotope(interval(R0));

54

55 %initial set

56 options.x0=center(R0); %initial state for simulation

57 options.R0=R0; %initial state for reachability analysis

58

59 %inputs

60 u=intervalMatrix(1,0.01);

61 U = zonotope(interval(intB*u));

62 options.uTrans=center(U);

63 options.U=U+(-options.uTrans); %input for reachability analysis

64

65 %other
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66 options.tStart=0; %start time

67 options.tFinal=0.7; %final time

68 options.intermediateOrder = 2;

69 options.originContained = 0;

70 options.timeStep = 0.002;

71 options.eAt = expm(matZ_A.center*options.timeStep);

72

73 options.zonotopeOrder=400; %zonotope order

74 options.polytopeOrder=3; %polytope order

75 options.taylorTerms=6;

76

77 %time step

78 r = options.timeStep;

79 maxOrder=options.taylorTerms;

80

81 %instantiate linear dynamics with constant parameters

82 linSys = linParamSys(matZ_A, eye(dim), r, maxOrder);

83 linSys2 = linParamSys(matI_A, eye(dim), r, maxOrder);

84

85 %reachable set computations

86 tic

87 Rcont = reach(linSys, options);

88 tComp = toc;

89 disp([’computation time using matrix zonotopes: ’,num2str(tComp)]);

90

91 tic

92 Rcont2 = reach(linSys2, options);

93 tComp = toc;

94 disp([’computation time using interval matrices: ’,num2str(tComp)]);

95

96 %create random simulations; RRTs would provide better results, but are

97 %computationally more demanding

98 runs = 60;

99 fracV = 0.5;

100 fracI = 0.5;

101 changes = 6;

102 simRes = simulate_random(linSys2, options, runs, fracV, fracI, changes);

103

104 %plot results--------------------------------------------------------------

105 for plotRun=1:2

106 % plot different projections

107 if plotRun==1

108 dims=[1 21];

109 else

110 dims=[20 40];

111 end

112

113 figure;

114 hold on

115

116 %plot reachable sets

117 for i=1:length(Rcont2)

118 Zproj = project(Rcont2{i},dims);

119 Zproj = reduce(Zproj,’girard’,3);

120 plotFilled(Zproj,[1 2],[.675 .675 .675],’EdgeColor’,’none’);

121 end

122

123 for i=1:length(Rcont)
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124 Zproj = project(Rcont{i},dims);

125 Zproj = reduce(Zproj,’girard’,3);

126 plotFilled(Zproj,[1 2],[.75 .75 .75],’EdgeColor’,’none’);

127 end

128

129 %plot initial set

130 plotFilled(options.R0,dims,’w’,’EdgeColor’,’k’);

131

132 %plot simulation results

133 for i=1:length(simRes.t)

134 plot(simRes.x{i}(:,dims(1)),simRes.x{i}(:,dims(2)),’Color’,0*[1 1 1]);

135 end

136

137 %abel plot

138 xlabel([’x_{’,num2str(dims(1)),’}’]);

139 ylabel([’x_{’,num2str(dims(2)),’}’]);

140 end

141

142 %plot results over time

143

144 figure;

145 hold on

146

147 %plot time elapse

148 for i=1:length(Rcont2)

149 %get Uout

150 Uout1 = interval(project(Rcont{i},0.5*dim));

151 Uout2 = interval(project(Rcont2{i},0.5*dim));

152 %obtain times

153 t1 = (i-1)*options.timeStep;

154 t2 = i*options.timeStep;

155 %generate plot areas as interval hulls

156 IH1 = interval([t1; infimum(Uout1)], [t2; supremum(Uout1)]);

157 IH2 = interval([t1; infimum(Uout2)], [t2; supremum(Uout2)]);

158

159 plotFilled(IH2,[1 2],[.675 .675 .675],’EdgeColor’,’none’);

160 plotFilled(IH1,[1 2],[.75 .75 .75],’EdgeColor’,’none’);

161 end

162

163 %plot simulation results

164 for i=1:(length(simRes.t))

165 plot(simRes.t{i},simRes.x{i}(:,0.5*dim),’Color’,[0 0 0]);

166 end

167

168 %--------------------------------------------------------------------------

The reachable set and the simulation are plotted in Fig. 29 for a time horizon of tf = 0.7. The
plot showing the reachable set of the state x20 over time is shown in Fig. 30.

15.1.3 Nonlinear Dynamics

For nonlinear dynamics, several examples are presented.

Tank System The first example is the tank system from [9] where water flows from one tank
into another one. This example can be used to study the effect of water power plants on the
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Figure 29: Illustration of the reachable set of the transmission example. The light gray shows
the reachable set using matrix zonotopes and the dark gray shows the results using interval
matrices. A white box shows the initial set and the black lines are simulated trajectories.
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Figure 30: Illustration of the reachable set of the transmission example over time. The light
gray shows the reachable set using matrix zonotopes and the dark gray shows the results using
interval matrices. Black lines show simulated trajectories.

water level of rivers. This example can be easy extended by several tanks and thus is a nice
benchmark example to study the scalability of algorithms for reachability analysis. CORA can
compute the reachable set with at least 100 tanks.

The MATLAB code that implements the simulation and reachability analysis of the tank exam-
ple is (the function is modified from the original file to better fit in this manual; line numbers
after the first line jump due to the removed function description):

1 function example_nonlinear_reach_01_tank

37

38 dim=6;

39

40 %set options --------------------------------------------------------------

41 options.tStart=0; %start time

42 options.tFinal=400; %final time

43 options.x0=[2; 4; 4; 2; 10; 4]; %initial state for simulation

44 options.R0=zonotope([options.x0,0.2*eye(dim)]); %initial set
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45

46 options.timeStep=4; %time step size for reachable set computation

47 options.taylorTerms=4; %number of taylor terms for reachable sets

48 options.zonotopeOrder=50; %zonotope order

49 options.intermediateOrder=5;

50 options.reductionTechnique=’girard’;

51 options.errorOrder=1;

52 options.polytopeOrder=2; %polytope order

53 options.reductionInterval=1e3;

54 options.maxError = 1*ones(dim,1);

55

56 options.plotType=’frame’;

57 options.dims=[1 2];

58

59 options.originContained = 0;

60 options.advancedLinErrorComp = 0;

61 options.tensorOrder = 2;

62 %--------------------------------------------------------------------------

63

64

65

66

67 %obtain uncertain inputs

68 options.uTrans = 0;

69 options.U = zonotope([0,0.005]); %input for reachability analysis

70

71 %specify continuous dynamics-----------------------------------------------

72 tank = nonlinearSys(6,1,@tank6Eq,options); %initialize tank system

73 %--------------------------------------------------------------------------

74

75

76 %compute reachable set using zonotopes

77 tic

78 Rcont = reach(tank, options);

79 tComp = toc;

80 disp([’computation time of reachable set: ’,num2str(tComp)]);

81

82 %create random simulations; RRTs would provide better results, but are

83 %computationally more demanding

84 runs = 60;

85 fracV = 0.5;

86 fracI = 0.5;

87 changes = 6;

88 simRes = simulate_random(tank, options, runs, fracV, fracI, changes);

89

90 %plot results--------------------------------------------------------------

91 for plotRun=1:3

92 % plot different projections

93 if plotRun==1

94 dims=[1 2];

95 elseif plotRun==2

96 dims=[3 4];

97 elseif plotRun==3

98 dims=[5 6];

99 end

100

101 figure;

102 hold on
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103

104 %plot reachable sets

105 for i=1:length(Rcont)

106 plotFilled(Rcont{i}{1},dims,[.8 .8 .8],’EdgeColor’,’none’);

107 end

108

109 %plot initial set

110 plotFilled(options.R0,dims,’w’,’EdgeColor’,’k’);

111

112 %plot simulation results

113 for i=1:length(simRes.t)

114 plot(simRes.x{i}(:,dims(1)),simRes.x{i}(:,dims(2)),’Color’,0*[1 1 1]);

115 end

116

117 %label plot

118 xlabel([’x_{’,num2str(dims(1)),’}’]);

119 ylabel([’x_{’,num2str(dims(2)),’}’]);

120 end

121 %--------------------------------------------------------------------------

The difference to specifying a linear system is that a link to a nonlinear differential equation
has to be provided, rather than the system matrix A and the input matrix B. The nonlinear
system model ẋ = f(x, u), where x is the state and u is the input, is shown below:

1 function dx = tank6Eq(t,x,u)

2

3 %parameters

4 k = 0.015;

5 k2 = 0.01;

6 g = 9.81;

7

8 %differential equations

9 dx(1,1)=u(1)+0.1+k2*(4-x(6))-k*sqrt(2*g)*sqrt(x(1)); %tank 1

10 dx(2,1)=k*sqrt(2*g)*(sqrt(x(1))-sqrt(x(2))); %tank 2

11 dx(3,1)=k*sqrt(2*g)*(sqrt(x(2))-sqrt(x(3))); %tank 3

12 dx(4,1)=k*sqrt(2*g)*(sqrt(x(3))-sqrt(x(4))); %tank 4

13 dx(5,1)=k*sqrt(2*g)*(sqrt(x(4))-sqrt(x(5))); %tank 5

14 dx(6,1)=k*sqrt(2*g)*(sqrt(x(5))-sqrt(x(6))); %tank 6

The output of this function is ẋ for a given time t, state x, and input u.

Fig. 31 shows the reachable set and the simulation for a time horizon of tf = 0.7.

Van der Pol Oscillator The Van der Pol oscillator is a standard example for limit cycles.
By using reachability analysis one can show that one always returns to the initial set so that the
obtained set is an invariant set. This example is used in [9] to demonstrate that one can obtain
a solution even if the linearization error becomes too large by splitting the reachable set. Later,
in [24] an improved method is presented that requires less splitting. This example demonstrates
the capabilities of the simpler approach presented in [9]. Due to the similarity of the MATLAB
code compared to the previous tank example, we only present the reachable set in Fig. 32.

Seven-Dimensional Example for Non-Convex Set Representation This academic ex-
ample is used to demonstrate the benefits of using higher-order abstractions of nonlinear systems
compared to linear abstractions. However, since higher order abstractions do not preserve con-
vexity when propagating reachable sets, the non-convex set representation polynomial zonotope
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Figure 31: Illustration of the reachable set of the linear example. The white box shows the
initial set and the black lines show simulated trajectories.
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Figure 32: Illustration of the reachable set of the Van der Pol oscillator. The white box shows
the initial set and the black lines show simulated trajectories.

is used as presented in [24]. Please note that the entire reachable set for the complete time
horizon is typically non-convex, even when the propagation from one point in time to another
point in time is convex. Due to the similarity of the MATLAB code compared to the previous
tank example, we only present the reachable set in Fig. 33.

Autonomous Car Following a Reference Trajectory This example presents the reachable
set of an automated vehicle developed at the German Aerospace Center. The difference of this
example compared to the previous example is that a reference trajectory is followed. Similar
models have been used in previous publications, see e.g., [38,55,56]. In CORA, this only requires
changing the input in options.uTrans from a vector to a matrix, where each column vector is
the reference value at the next sampled point in time. Due to the similarity of the MATLAB
code compared to the previous tank example, we only present the reachable set in Fig. 34, where
the reference trajectory is plotted in red.
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Figure 33: Illustration of the reachable set of the seven-dimensional example for non-convex
set representation. The white box shows the initial set and the black lines show simulated
trajectories.
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Figure 34: Illustration of the reachable set of the seven-dimensional example for non-convex
set representation. The white box shows the initial set and the black lines show simulated
trajectories.

15.1.4 Nonlinear Dynamics with Uncertain Parameters

As for linear systems, specialized algorithms have been developed for considering uncertain
parameters of nonlinear systems. To better compare the results, we again use the tank system
whose reachable set we know from a previous example. The plots show not only the case with
uncertain parameters, but also the one without uncertain parameters.

The MATLAB code that implements the simulation and reachability analysis of the nonlinear
example with uncertain parameters is (the function is modified from the original file to better fit
in this manual; line numbers after the first line jump due to the removed function description):

1 function example_nonlinearParam_reach_01_tank()

37

38 dim=6;

39

40 %set options --------------------------------------------------------------

41 options.tStart=0; %start time

42 options.tFinal=400; %final time

43 options.x0=[2; 4; 4; 2; 10; 4]; %initial state for simulation
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44 options.R0=zonotope([options.x0,0.2*eye(dim)]); %initial set

45 options.timeStep=4;

46 options.taylorTerms=4; %number of taylor terms for reachable sets

47 options.intermediateOrder = options.taylorTerms;

48 options.zonotopeOrder=10; %zonotope order

49 options.reductionTechnique=’girard’;

50 options.maxError = 1*ones(dim,1);

51 options.reductionInterval=1e3;

52 options.tensorOrder = 1;

53

54 options.advancedLinErrorComp = 0;

55

56 options.u=0; %input for simulation

57 options.U=zonotope([0,0.005]); %input for reachability analysis

58 options.uTrans=0;

59

60 options.p=0.015; %parameter values for simulation

61 options.paramInt=interval(0.0148,0.015); %parameter intervals

62 %--------------------------------------------------------------------------

63

64 %--------------------------------------------------------------------------

65

66 %specify continuous dynamics with and without uncertain parameters---------

67 tankParam = nonlinParamSys(6,1,1,@tank6paramEq,options.maxError,options);

68 tank = nonlinearSys(6,1,@tank6Eq,options);

69 %--------------------------------------------------------------------------

70

71 %compute reachable set of tank system with and without uncertain parameters

72 tic

73 RcontParam = reach(tankParam,options); %with uncertain parameters

74 tComp = toc;

75 disp([’time of reachable set with uncertain parameters: ’,num2str(tComp)]);

76 tic

77 RcontNoParam = reach(tank, options); %without uncertain parameters

78 tComp = toc;

79 disp([’time of reachable set without uncertain parameters: ’,num2str(tComp)]);

80

81 %create random simulations; RRTs would provide better results, but are

82 %computationally more demanding

83 runs = 60;

84 fracV = 0.5;

85 fracI = 0.5;

86 changes = 6;

87 simRes = simulate_random(tank, options, runs, fracV, fracI, changes);

88

89

90 %plot results--------------------------------------------------------------

91 plotOrder = 8;

92 for plotRun=1:3

93 % plot different projections

94 if plotRun==1

95 dims=[1 2];

96 elseif plotRun==2

97 dims=[3 4];

98 elseif plotRun==3

99 dims=[5 6];

100 end

101
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102 figure;

103 hold on

104

105 %plot reachable sets of zonotope; uncertain parameters

106 for i=1:length(RcontParam)

107 for j=1:length(RcontParam{i})

108 Zproj = reduce(RcontParam{i}{j},’girard’,plotOrder);

109 plotFilled(Zproj,dims,[.675 .675 .675],’EdgeColor’,’none’);

110 end

111 end

112

113 %plot reachable sets of zonotope; without uncertain parameters

114 for i=1:length(RcontNoParam)

115 for j=1:length(RcontNoParam{i})

116 Zproj = reduce(RcontNoParam{i}{j},’girard’,plotOrder);

117 plotFilled(Zproj,dims,’w’,’EdgeColor’,’k’);

118 end

119 end

120

121 %plot initial set

122 plotFilled(options.R0,dims,’w’,’EdgeColor’,’k’);

123

124

125 %plot simulation results

126 for i=1:length(simRes.x)

127 plot(simRes.x{i}(:,dims(1)),simRes.x{i}(:,dims(2)),’k’);

128 end

129

130 %label plot

131 xlabel([’x_{’,num2str(dims(1)),’}’]);

132 ylabel([’x_{’,num2str(dims(2)),’}’]);

133 end

134 %--------------------------------------------------------------------------

The reachable set and the simulation are plotted in Fig. 35 for a time horizon of tf = 400.
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Figure 35: Illustration of the reachable set of the linear example. The gray region shows the
reachable set with uncertain parameters, while the white area shows the reachable set without
uncertain parameters. Another white box shows the initial set and the black lines show simulated
trajectories.
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15.1.5 Discrete-time Nonlinear Systems

We demonstrate the calculation of the reachable set for a time-discrete system with the example
of a stirred tank reactor model. The original continuous time system model is given in [57].
Using the trapezoidal rule for time discretization, we obtained the following nonlinear discrete
time system:

CA(k + 1) =
1− qτ

2V − k0 · τ · exp
(

− E
R·T (k)

)

· CA(k) +
q
V
· CAf · τ

1 + qτ
2V + w1(k) · τ

T (k + 1) =
T (k) ·

(

1− τ
2 − τ ·UA

2V ·ρ·Cp

)

+ τ ·
(

Tf · q
V
+ UA·u(CA(k),T (k))

V ·ρ·Cp

)

1 + τ ·q
2V + τ ·UA

2V ·ρ·Cp

−
CA(k) · ∆H·k0·τ

ρ·Cp
· exp

(

− E
R·T (k)

)

1 + τ ·q
2V + τ ·UA

2V ·ρ·Cp

+ τ · w2(k) ,

(20)

where u(CA(k), T (k)) = −3 · CA(k) − 6.9 · T (k) is the linear control law, w1(k) ∈ [−0.1, 0.1]
and w2(k) ∈ [−2, 2] are bounded disturbances, and τ is the time step size. The values for the
model parameters are given in [57]. The MATLAB code that implements the simulation and
reachability analysis for the nonlinear discrete time model is shown below:

1 function completed = example_nonlinearDT_reach_cstrDisc

2

3 % set options -------------------------------------------------------------

4 options.tStart=0; % start time

5 options.tFinal=0.15; % final time

6 options.x0=[-0.15;-45]; % initial state for simulation

7 options.R0=zonotope([options.x0,diag([0.005;3])]); % initial set

8

9 options.zonotopeOrder=100; % maximum zonotope order

10 options.reachabilitySteps=10; % number of reachability steps

11 options.timeStep=options.tFinal...

12 / options.reachabilitySteps; % time step size

13

14 % additional parameters for reachability analysis

15 options.tensorOrder = 3;

16 options.errorOrder = 5;

17 options.reductionTechnique=’girard’;

18

19

20 % obtain uncertain inputs -------------------------------------------------

21 options.uTrans = [0;0];

22 options.U = zonotope([zeros(2,1),diag([0.1;2])]); % uncertain inputs

23

24

25 % specify discrete dynamics -----------------------------------------------

26 sysDisc = nonlinearSysDT(2,2,@cstrDiscr,options);

27

28

29 % compute reachable sets --------------------------------------------------

30 R = reach(sysDisc,options);

31

32
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33 % simulate the system -----------------------------------------------------

34 fractionVertices = 0.5;

35 fractionInputVertices = 0.5;

36 runs = 100;

37

38 simRes = simulate_random(sysDisc, options, runs, ...

39 fractionVertices, fractionInputVertices);

40

41

42 % plot reachable sets -----------------------------------------------------

43 hold on

44 for i=1:length(R)

45 Zproj = reduce(R{i},’girard’,3);

46 plotFilled(Zproj,[1 2],[.8 .8 .8],’EdgeColor’,’none’);

47 end

48

49 % plot simulated trajectories ---------------------------------------------

50 for i=1:length(simRes.x)

51 plot(simRes.x{i}(1,:),simRes.x{i}(2,:),’.k’);

52 end

53

54 % add labels to plot ------------------------------------------------------

55 xlabel(’T-T_0’);

56 ylabel(’C-C_0’);

57 box on

58

59 completed = 1;

60 %--------------------------------------------------------------------------

The reachable set and the simulation are displayed in Fig. 36 for a time horizon of tf = 0.15
min.
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Figure 36: Illustration of the reachable set of the nonlinear discrete-time example. The black
dots show the simulated points.

88



15 EXAMPLES

15.1.6 Nonlinear Differential-Algebraic Systems

CORA is also capable of computing reachable sets for semi-explicit, index-1 differential-algebraic
equations. Although many index-1 differential-algebraic equations can be transformed into an
ordinary differential equation, this is not always possible. For instance, power systems cannot be
simplified due to Kirchhoff’s law which constraints the currents of a node to sum up to zero. The
capabilities of computing reachable sets are demonstrated for a small power system consisting
of three buses. More complicated examples can be found in [19,58,59].

The MATLAB code that implements the simulation and reachability analysis of the nonlinear
example with uncertain parameters is (the function is modified from the original file to better fit
in this manual; line numbers after the first line jump due to the removed function description):

1 function example_nonlinearDA_reach_01_powerSystem_3bus()

26

27 %set path

28 options.tensorOrder = 1;

29

30

31 %specify continuous dynamics-----------------------------------------------

32 powerDyn = nonlinDASys(2,6,2,@bus3Dyn,@bus3Con,options);

33 %--------------------------------------------------------------------------

34

35 %set options --------------------------------------------------------------

36 options.tStart = 0; %start time

37 options.tFinal = 5; %final time

38 options.x0 = [380; 0.7]; %initial state

39 options.y0guess = [ones(0.5*powerDyn.nrOfConstraints, 1);

zeros(0.5*powerDyn.nrOfConstraints, 1)];

40 options.R0 = zonotope([options.x0,diag([0.1, 0.01])]); %initial set

41 options.uTrans = [1; 0.4];

42 options.U = zonotope([zeros(2,1),diag([0, 0.1*options.uTrans(2)])]);

43

44 %options.timeStep=0.01; %time step size for reachable set computation

45 options.timeStep=0.05; %time step size for reachable set computation

46 options.taylorTerms=6; %number of taylor terms for reachable sets

47 options.zonotopeOrder=200; %zonotope order

48 options.errorOrder=1.5;

49 options.polytopeOrder=2; %polytope order

50 options.reductionTechnique=’girard’;

51

52 options.originContained = 0;

53 options.reductionInterval = 1e5;

54 options.advancedLinErrorComp = 0;

55

56 options.maxError = [0.5; 0];

57 options.maxError_x = options.maxError;

58 options.maxError_y = 0.005*[1; 1; 1; 1; 1; 1];

59 %--------------------------------------------------------------------------

60

61 %compute reachable set

62 tic

63 Rcont = reach(powerDyn, options);

64 tComp = toc;

65 disp([’computation time of reachable set: ’,num2str(tComp)]);

66

67 %create random simulations; RRTs would provide better results, but are

68 %computationally more demanding
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69 runs = 60;

70 fracV = 0.5;

71 fracI = 0.5;

72 changes = 6;

73 simRes = simulate_random(powerDyn, options, runs, fracV, fracI, changes);

74

75 %plot results--------------------------------------------------------------

76 dims=[1 2];

77

78 figure;

79 hold on

80

81 %plot reachable sets

82 for i=1:length(Rcont)

83 for j=1:length(Rcont{1})

84 Zproj = project(Rcont{i}{j},dims);

85 Zproj = reduce(Zproj,’girard’,3);

86 plotFilled(Zproj,[1 2],[.75 .75 .75],’EdgeColor’,’none’);

87 end

88 end

89

90 %plot initial set

91 plotFilled(options.R0,dims,’w’,’EdgeColor’,’k’);

92

93 %plot simulation results

94 for i=1:length(simRes.t)

95 plot(simRes.x{i}(:,dims(1)),simRes.x{i}(:,dims(2)),’Color’,0*[1 1 1]);

96 end

97

98 %label plot

99 xlabel([’x_{’,num2str(dims(1)),’}’]);

100 ylabel([’x_{’,num2str(dims(2)),’}’]);

101 %--------------------------------------------------------------------------

The reachable set and the simulation are plotted in Fig. 37 for a time horizon of tf = 5.
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Figure 37: Illustration of the reachable set of nonlinear differential-algebraic example. The white
box shows the initial set and the black lines show simulated trajectories.
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15.2 Hybrid Dynamics

As already described in Sec. 10, CORA can compute reachable sets of mixed discrete/continuous
or so-called hybrid systems. The difficulty in computing reachable sets of hybrid systems is the
intersection of reachable sets with guard sets and the subsequent enclosure by the used set
representation. Two major methods are demonstrated by the bouncing ball example and a
powertrain example: geometric-based guard intersection for the bouncing ball example and
mapping-based guard intersection for the powertrain example. The geometric-based approach is
the dominant method in the literature (see e.g., [8,44,60–64]), but the mapping-based approach
has shown great scalability for some examples [45]. Determining advantages and disadvantages
of both methods require further research.

15.2.1 Bouncing Ball Example

We demonstrate the syntax of CORA for the well-known bouncing ball example, see e.g., [65,
Section 2.2.3]. Given is a ball in Fig. 38 with dynamics s̈ = −g, where s is the vertical position
and g is the gravity constant. After impact with the ground at s = 0, the velocity changes
to v′ = −αv (v = ṡ) with α ∈ [0, 1]. The corresponding hybrid automaton can be formalized
according to Sec. 10 as

s0

v0

g

Figure 38: Bouncing ball.

V = {v1}
X = R+ × R (ball is above ground)
U = Yc = {}
T = {(z1, z1)}
inv(z1) = {[x1, x2]T |x1 ∈ R+

0 , x2 ∈ R}
g
(
(z1, z1)

)
= {[x1, x2]T |x1 = 0, x2 ∈ R−

0 }
h
(
(z1, z1), x

)
=

[
x1

−αx2

]

f(z1, x) =

[
x2
−g

]

The MATLAB code that implements the simulation and reachability analysis of the bouncing
ball example is (the function is modified from the original file to better fit in this manual; line
numbers after the first line jump due to the removed function description):

1 function example_hybrid_reach_01_bouncingBall

28

29 %set options---------------------------------------------------------------

30 options.x0 = [1; 0]; %initial state

31 options.R0 = zonotope([options.x0, diag([0.05, 0.05])]); %initial set

32 options.startLoc = 1; %initial location

33 options.finalLoc = 0; %0: no final location

34 options.tStart = 0; %start time

35 options.tFinal = 1.7; %final time

36 options.timeStepLoc{1} = 0.05; %time step size

37 options.taylorTerms = 10;

38 options.zonotopeOrder = 20;

39 options.polytopeOrder = 10;
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40 options.errorOrder=2;

41 options.reductionTechnique = ’girard’;

42 options.isHyperplaneMap = 0;

43 options.enclosureEnables = 5; %choose enclosure method(s)

44 options.originContained = 0;

45 %--------------------------------------------------------------------------

46

47

48 %specify hybrid automaton--------------------------------------------------

49 %specify linear system of bouncing ball

50 A = [0 1; 0 0];

51 B = eye(2); % no loss of generality to specify B as the identity matrix

52 linSys = linearSys(’linearSys’,A,B);

53

54 %define large and small distance

55 dist = 1e3;

56 eps = 1e-6;

57 alpha = -0.75; %rebound factor

58

59 %invariant

60 inv = interval([-2*eps; -dist], [dist; dist]);

61 %guard sets

62 guard = interval([-eps; -dist], [0; -eps]);

63 %resets

64 reset.A = [0, 0; 0, alpha]; reset.b = zeros(2,1);

65 %transitions

66 trans{1} = transition(guard,reset,1,’a’,’b’); %--> next loc: 1

67 %specify location

68 loc{1} = location(’loc1’,1,inv,trans,linSys);

69 %specify hybrid automata

70 HA = hybridAutomaton(loc); % for "geometric intersection"

71 %--------------------------------------------------------------------------

72

73 %set input:

74 options.uLoc{1} = [0; -9.81]; %input for simulation

75 options.uLocTrans{1} = options.uLoc{1}; %input center

76 options.Uloc{1} = zonotope(zeros(2,1)); %input deviation

77

78 %simulate hybrid automaton

79 HA = simulate(HA,options);

80

81 %compute reachable set

82 [HA] = reach(HA,options);

83

84 %choose projection and plot------------------------------------------------

85 figure

86 hold on

87 options.projectedDimensions = [1 2];

88 options.plotType = ’b’;

89 plot(HA,’reachableSet’,options); %plot reachable set

90 plotFilled(options.R0,options.projectedDimensions,’w’,’EdgeColor’,’k’);

91 plot(HA,’simulation’,options); %plot simulation

92 axis([0,1.2,-6,4]);

93 %--------------------------------------------------------------------------

The reachable set and the simulation are plotted in Fig. 39 for a time horizon of tf = 1.7.
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Figure 39: Illustration of the reachable set of the bouncing ball. The black box shows the initial
set and the black line shows the simulated trajectory.

15.2.2 Bouncing Ball Example (Converted From SpaceEx)

This example is identical to the bouncing ball example shown in Sec. 15.2.1, except that we
use a model that has been automatically converted from SpaceEx. The MATLAB code that
implements the simulation and reachability analysis of the bouncing ball example is (the function
is modified from the original file to better fit in this manual; line numbers after the first line
jump due to the removed function description):

1 function completed = example_hybrid_reach_01_bouncingBall_converted

26

27 %set options---------------------------------------------------------------

28 options.x0 = [1; 0]; %initial state for simulation

29 options.R0 = zonotope([options.x0, diag([0.05, 0.05])]); %initial set

30 options.startLoc = 1; %initial location

31 options.finalLoc = 0; %0: no final location

32 options.tStart = 0; %start time

33 options.tFinal = 1.7; %final time

34 options.timeStepLoc{1} = 0.05; %time step size

35 options.taylorTerms = 10;

36 options.zonotopeOrder = 20;

37 options.polytopeOrder = 10;

38 options.errorOrder=2;

39 options.reductionTechnique = ’girard’;

40 options.isHyperplaneMap = 0;

41 options.guardIntersect = ’polytope’;

42 options.enclosureEnables = 5; %choose enclosure method(s)

43 options.originContained = 0;

44 %--------------------------------------------------------------------------

45

46

47 %specify hybrid automaton--------------------------------------------------

48 % converetd hybrid automaton model of the bouncing ball obtained from

49 % "spaceex2cora(bball.xml);"

50 HA = bball;

51 %--------------------------------------------------------------------------

52

53 %set input:

54 options.uLoc{1} = 0; % no inputs

55 options.uLocTrans{1} = 0; % no inputs
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56 options.Uloc{1} = zonotope(0); % no inputs

57

58 %simulate hybrid automaton

59 HA = simulate(HA,options);

60

61 %compute reachable set

62 [HA] = reach(HA,options);

63

64 %choose projection and plot------------------------------------------------

65 figure

66 hold on

67 options.projectedDimensions = [1 2];

68 options.plotType = ’b’;

69 plot(HA,’reachableSet’,options); %plot reachable set

70 plotFilled(options.R0,options.projectedDimensions,’w’,’EdgeColor’,’k’);
71 plot(HA,’simulation’,options); %plot simulation

72 axis([0,1.2,-6,4]);

73 %--------------------------------------------------------------------------

The reachable set and the simulation are identical to the model in Sec. 15.2.1 and can be found
in Fig. 39 for a time horizon of tf = 1.7.

15.2.3 Powertrain Example

The powertrain example is taken out of [45, Sec. 6], which models the powertrain of a car with
backlash. To investigate the scalability of the approach, one can add further rotating masses,
similarly to adding further tanks for the tank example. Since the code of the powertrain example
is rather lengthy, we are not presenting it in the manual; the interested reader can look it up in
the example folder of the CORA code. The reachable set and the simulation are plotted in Fig.
40 for a time horizon of tf = 2.
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Figure 40: Illustration of the reachable set of the bouncing ball. The black box shows the initial
set and the black line shows the simulated trajectory.
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16 Conclusions

CORA is a toolbox for the implementation of prototype reachability analysis algorithms in
MATLAB. The software is modular and is organized into four main categories: vector set
representations, matrix set representations, continuous dynamics, and hybrid dynamics. CORA
includes novel algorithms for reachability analysis of nonlinear systems and hybrid systems with
a special focus on scalability; for instance, a power network with more than 50 continuous state
variables has been verified in [59]. The efficiency of the algorithms used means it is even possible
to verify problems online, i.e., while they are in operation [56].

One particularly useful feature of CORA is its adaptability: the algorithms can be tailored to
the reachability analysis problem in question. Forthcoming integration into SpaceEx, which has
a user interface and a model editor, should go some way towards making CORA more accessible
to non-experts.
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A Migrating the old partition Class into the new one

This table should help to automatically rename old functions to make one’s own code compatible
with CORA 2018. Details on the functionality of each method can be found in Sec. 11.1.

old command new command

allSegmentIntervalHulls cellIntervals (use one input)
cellCandidates intersectingCells

cellCenter cellCenter

cellIndices cellIndices

cellIntersection intersectingCells

cellIntersection2 intersectingCells

cellIntersection3 exactIntersectingCells

cellSegments cellSegments

centerSegment not continued
display display

findSegment intersectingCells

findSegments intersectingCells

get now public
nextSegment not continued
normalize not continued
nrOfStates nrOfCells

plot plot

plotHisto not continued
plotHistobars not continued
segmentIntervals cellIntervals

segmentPolytope cellPolytopes

segmentZonotope cellZonotopes

get not continued
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B Implementation of Loading SpaceEx Models

This section describes the implementation details of the spaceex2cora converter. We will first
briefly describe the SpaceEx format in Sec. B.1, followed by an overview of the conversion in
Sec. B.2. Details of the conversion are presented in Sec. B.3 and B.4.

B.1 The SpaceEx Format

The SpaceEx format [54] has similarities to statecharts [66]. A SpaceEx model is composed of
network and base components. Base components resemble XOR states in statecharts, which in
essence describe a monolithic hybrid automaton (see Sec. 10) of which not all components have
to be specified, e.g., one does not have to specify a flow function if a base component is a static
controller. Analogously to XOR states, only one base component can be active at the same
time. Network components resemble AND states of statecharts and bind base components. As
in AND states of statecharts, several base components can be active at the same time. SpaceEx
models can be seen as a tree of components, where base components are the leaves and the root
of the tree defines the interface (i.e., states & inputs) of the complete model consisting of all
components.

When a component is bound by a network component, all variables of the bound component
(states, inputs, constant parameters) must be mapped to variables of the binding component or
to numerical values. If a component is bound multiple times, each bind creates a new instance
of that component with independent variables. This makes it convenient to reuse existing model
structures, e.g., when one requires several heaters in a building, but the dynamics of each heater
has the same structure but different parameters.

The SpaceEx modeling language is described in greater detail on the SpaceEx website9.

B.2 Overview of the Conversion

The conversion of SpaceEx models to CORA models is achieved in two phases. In the first
phase, the XML structure is parsed and a MATLAB struct of the model is generated. This is
realized in the converter function spaceex2cora.m when it calls

structHA = SX2structHA(’model.xml’,’mainComponent’)

returning the MATLAB structure structHA. The optional second argument specifies the highest-
ranking network component, from which the model is loaded. In XML files containing just one
model that is always the last defined component (default component). Please note that the
function SX2structHA has verbose output. Please check any warnings issued, as they might
indicate an incomplete conversion. For details see the restrictions mentioned in Sec. 14.2.

In the second phase, the computed structHA is used to create a MATLAB function that when
executed instantiates the CORA model. This MATLAB function is created by

StructHA2file(structHA,’myModel’,’my/cora/files’).

Calling myModel() instantiates the CORA model converted from the original SpaceEx model;
this is demonstrated for a bouncing ball example in Sec. 15.2.2.

9http://spaceex.imag.fr/sites/default/files/spaceex modeling language 0.pdf
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B.3 Parsing the SpaceEx Components (Phase 1)

Parsing the SpaceEx components is performed in five steps:

1. Accessing XML files (Sec. B.3.1);

2. Parsing component templates (Sec. B.3.2);

3. Building component instances (Sec. B.3.3);

4. Merging component instances (Sec. B.3.4);

5. Conversion to state-space form (Sec. B.3.5).

These steps are described in detail subsequently.

B.3.1 Accessing XML Files

We use the popular function xml2struct (Falkena, Wanner, Smirnov) from the MATLAB File
Exchange to conveniently analyze XML files. The function converts XML structures such as

<mynode id=”1” note=”foobar”>
<foo>FOO</foo>
<bar>BAR</bar>

</mynode>

to a nested MATLAB struct:

MATLAB struct

mynode

Attributes

id: ’1’
description: ’foobar’

foo

Text: ’FOO’

bar

Text: ’BAR’

The resulting MATLAB struct realizes an intuitive access to attributes and an easy extraction
of sub-nodes in MATLAB.

B.3.2 Parsing Component Templates

Before we begin with the semantic evaluation, base components and network components are
parsed into a more convenient format.

Base components For base components we convert equations stored as strings specifying
flow, invariants, guards, and resets, to a more compact and manipulatable format. Furthermore,
we split the global list of transitions to individual lists for each location of outgoing transitions.
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Flow or reset functions are provided in SpaceEx as a list of equations separated by ampersands,
as demonstrated in the subsequent example taken from the platoon hybrid model:

<f low>
x1 ’ == x2 &
x2 ’ == −x3 + u &
x3 ’ == 1.605∗ x1 + 4.868∗ x2 −3.5754∗x3 −0.8198∗x4 + 0.427∗ x5 −

0.045∗ x6 − 0.1942∗ x7 + 0.3626∗ x8 − 0.0946∗ x9 &
x4 ’ == x5 &
x5 ’ == x3 − x6 &
x6 ’ == 0.8718∗ x1 + 3.814∗ x2 −0.0754∗x3 + 1.1936∗ x4 + 3.6258∗ x5 −

3.2396∗ x6 − 0.595∗ x7+ 0.1294∗ x8 −0.0796∗x9 &
x7 ’ == x8 &
x8 ’ == x6 − x9 &
x9 ’ == 0.7132∗ x1 + 3.573∗ x2 − 0.0964∗ x3 + 0.8472∗ x4 + 3.2568∗ x5 −

0.0876∗ x6 + 1.2726∗ x7 + 3.072∗ x8 − 3.1356∗ x9 &
t ’ == 1

</f low>

We separate the equations and represent each one as a tuple of the left-hand side variable name
and the right-hand side expression. Variable names are stored as MATLAB strings, while the
right-hand-side expressions are stored as symbolic expressions of the Symbolic Math Toolbox. The
Symbolic Math Toolbox also provides powerful manipulation tools such as variable substitution
(command subs), which are heavily used during the conversion process. The result of the above
example is the following struct (symbolic expressions are indicated by curly brackets):

Flow

varNames: [ ”x1” ”x2” ”x3” ”x4” ”x5” ”x6” ”x7” ”x8” ”x9” ”t” ]
expressions: [ {x2} {−x3 + u} . . . {1} ]

Invariant and guard sets are similarly defined by a list of equations or inequalities:

<i nvar i an t>
t <= 20 &
min <= u <= max

</invar i an t>

For invariants and guard sets, we convert both sides of each equation or inequality to symbolic
expressions. The left side is subtracted by the right side of the equations/inequalities to receive
expressions of the form expr ≤ 0 or expr = 0. The result of the above example is

Invariant

inequalities: [ {t− 20} {min − u} {u−max} ]
equalities: [ ]

As a result, base components are reformatted into the format shown in Fig. 41.

Network components For network components we need to parse the references to other
components, and perform a variable mapping for each referenced component. Analogously to
differential equations in base components, variable mappings in network components are stored
using strings and symbolic expressions. We also parse the variables of all components and store
their attributes. Please note that label-variables are currently ignored, since synchronization
label logic is not yet implemented in CORA.
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id
listOfVar(i)
States(i)

name
Flow
Invariant
Trans(i)

destination
guard
reset

Figure 41: Parsed base component template (indexed fields indicate struct arrays).

As a result, network components are reformatted into the format shown in Fig. 42.

id
listOfVar(i)
Binds(i)

id
keys
values
values text

Figure 42: Parsed network component template (indexed fields indicate struct arrays).

While loading models with variables named i, j, I or J, we discovered that our string to sym-
bolic parser (str2sym) automatically replaces them by the constant

√
−1 since MATLAB inter-

prets those as the imaginary unit. As a workaround, we pre-parse all our equations and variable
definitions to rename those variables. All names fulfilling the regular expression i+|j+|I+|J+

are lengthened by a letter. The Symbolic Math Toolbox can also substitute other common
constants such as pi, but does not do so while parsing. It is still recommended to avoid them
as variable names.

B.3.3 Building Component Instances

In the next step, we build the component tree, which represents the hierarchy of all network and
base components. An example that demonstrates this process is shown in Fig. 43. The result
from the previous conversion step is a list of network and base component templates, where
the connections between the list elements are represented as references (binds) between these
component templates. To build the component tree, we start from the root component and
resolve all of the references to other components. This process is repeated recursively until all
leafs of the tree consist of base components, which per definition do not contain any references
to other components.

Each time we resolve a reference, we create a base or network component instance from the
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corresponding template. Note that it is possible that templates are referenced multiple times.
In order to create an instance, we have to replace the variable names in the template with the
variable names that the parent component specifies for this reference. If the template represents
a base component, we rename the variables in the flow function as well as in the equations for
the invariant set, the guard sets and the reset functions. Otherwise, if the template represents
a network component, we rename the corresponding variables in the outgoing references of the
component. Once the component tree is completely build, all instances in the tree use only
variables that are defined in the root component, which is crucial for the operations performed
in the step.

Figure 43: Example for the composition of the component tree. The red nodes represent Network
components (NC), and the blue nodes base components (BC). Dashed arrows depict references,
while solid arrows represent instantiations.

B.3.4 Merging Component Instances

In the component tree that was created in the conversion step, each base component instance
defines the system dynamics for a subset of the system states. The state vector for the overall
system therefore represents a concatenation of the states from the different base component
instances. For the component tree that is shown in Fig. 43, the state vector could for example
look as follows:

~x = (x1, x2
︸ ︷︷ ︸

BC1(1)

, x3, x4
︸ ︷︷ ︸

BC1(2)

, x5, x6
︸ ︷︷ ︸

BC1(3)

, x7, x8, x9
︸ ︷︷ ︸

BC2(1)

)T (21)

The component tree therefore represents the overall system as a Compositional Hybrid Au-
tomaton. At this point, there exist two different options for the further conversion: Since the
2018 release, CORA provides the class parallelHybridAutomaton for the efficient storage and
analysis of Compositional Hybrid Automata (see Sec. 10.5). So the SpaceEx model can either
be converted to a parallelHybridAutomaton object, or to a flat hybrid automaton represented
as a hybridAutomaton object. In the second case, we have to perform the automaton product,
which is shortly described in the remainder of this section.

We have implemented the parallel composition for two base components, which can be applied
iteratively to compose a flat hybrid automaton from all components. The product of two in-
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stances with discrete state sets S1 and S2 has the state set S1 × S2. Thus, we have to compute
a new representation for the combined states {(s1, s2)|s1 ∈ S1, s2 ∈ S2} by combining flow
functions, invariants and transitions. A detailed description of the automaton product and the
required operations is provided in [67, Chapter 5] as well as in [46, Def. 2.9].

B.3.5 Conversion to State-Space Form

Once the composed automaton has been created, we have to convert the descriptions of flow
functions, invariant sets, guard sets and reset functions to a format that can be directly used to
create the corresponding CORA objects in the second phase of the conversion process. In the
following, we describe the required operations for the different parts.

Flow Functions Depending of the type of the flow function, we create different CORA objects.
Currently the converter supports the creation of linearSys objects for linear flow functions and
nonlinearSys objects for nonlinear flow functions. We plan to also include linear as well as
nonlinear systems with constant parameters in the future. Up to now, we stored the flow
functions as general nonlinear symbolic equations of the form ẋ = f(x, u) in the corresponding
base components. If the flow function is linear, we have represent it in the form ẋ = Ax+Bu+c
in order to be able to construct the linearSys object later on. The coefficients for the matrices
A ∈ Rn×n and B ∈ Rn×m can be obtained from the symbolic expressions by computing their
partial derivatives:

aij =
∂fi(x, u)

∂xj

bij =
∂fi(x, u)

∂uj

We compute the partial derivatives with the jacobian command from MATLAB’s Symbolic
Math Toolbox. The constant part c ∈ Rn can be easily obtained by substituting all variables
with 0:

ci = fi(0, 0)

These computations can also be used to check the linearity of a flow function: If the function is
linear, then all partial derivatives have to be constant. If a flow fails the linearity test, we create
a nonlinearSys object instead of a linearSys object. This requires the flow equation to be
stored in a MATLAB function, which we can easily create by converting symbolic expressions
to strings.

Reset Functions Analogously to linear flow functions, reset functions r(x) are evaluated to
obtain the form r(x) = Ax+ b. A failure of the linearity test causes an error here, since CORA
currently does not support nonlinear reset functions.

Guard Sets and Invariant Sets The SpaceEx modeling language uses polyhedra for con-
tinuous sets. CORA can store polyhedra with the class mptPolytope, which is based on the
Polyhedron class of the Multi-Parametric Toolbox 3 for MATLAB10.

Polyhedra can be specified by the coefficients C ∈ Rp×n, d ∈ Rp, Ce ∈ Rq×n, de ∈ Rq forming
the equation system Cx ≤ d∧Cex = de. We previously stored guards and invariants as symbolic
expressions expr ≤ 0 or expr = 0. As for flow functions, the coefficients of Cx ≤ d and Cex = de

10people.ee.ethz.ch/ mpt/3/
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are obtained via partial derivatives and insertion of zeros. Nonlinearity causes an error, since
only linear sets are supported by CORA.

B.4 Creating the CORA model (Phase 2)

In the second phase of the conversion, we generate a MATLAB function that creates a
hybridAutomaton or parallelHybridAutomaton MATLAB object from the parsed SpaceEx
model. This function has an identical name as that of the SpaceExModel and is created in
/models/SpaceExConverted/.

In order to interpret the CORA model in state-space form, each model function starts with an
interface specification, presenting which entry of a state or input vector corresponds to which
variable in the SpaceEx model. Please find below the example of a chaser spacecraft:

%% In t e r f a c e S p e c i f i c a t i o n :
% This s e c t i on c l a r i f i e s the meaning o f s t a t e & input dimensions
% by showing t h e i r mapping to SpaceEx v a r i a b l e names .

% Component 1 ( ChaserSpacecraf t ) :
% s t a t e x := [ x ; y ; vx ; vy ; t ]
% input u := [uDummy]

It is worth noting that CORA does currently not support zero-input automata. For this reason
we have added a dummy input without any in the example above.

B.5 Open Problems

The spaceex2cora converter has already been used in the ARCH 2018 friendly competition.
However, its development is far from being finished. We suggest addressing the following issues
in the future:

• Input constraints: Input constraints are in the SpaceEx format specified as as a part of
the invariant set. The input constraints for the converted CORA model should therefore
be automatically extracted from the SpaceEx model.

• Uncertain parameters: Uncertain system parameters are currently converted to uncer-
tain system inputs for the CORA model. We plan for the future to automatically create
linParamSys or nonlinParamSys objects if uncertain system parameters are present.

• Synchronized composition: The SpaceEx format enables the creation of synchronized
hybrid automata. Since CORA currently does not support synchronization, it would be
good to implement this functionality in CORA.

C Licensing

CORA is released under the GPLv3.

D Disclaimer

The toolbox is primarily for research. We do not guarantee that the code is bug-free.

102

http://www.gnu.org/licenses/gpl.txt


REFERENCES

One needs expert knowledge to obtain optimal results. This tool is prototypical and not all
parameters for reachability analysis are automatically set. Not all functions that exist in the
software package are explained. Reasons could be that they are experimental or designed for
special applications that address a limited audience.

If you have questions or suggestions, please contact us through http://www6.in.tum.de/.

E Contributors

All people that have contributed so far are listed in alphabetical order of the last name in Tab.
10. The table further shows the number of files for each of the different CORA modules that an
auther contributed to.

Table 10: Number of files that an author contributed to, patitioned by the different modules of
CORA.
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Daniel Althoff - 1 - - - - - - - - - 2
Matthias Althoff 150 369 92 - 21 34 59 69 4 3 35 68
Victor Charlent - 1 - - - - 3 - - - - -
Changshun Deng - - - - - 1 - - - - - -
Ahmed El-Guindy - - - - 2 - - - - - - -
Dmitry Grebenyuk - 67 - - - 7 - - - - - 63
Niklas Kochdumper 22 69 1 - 4 10 21 - - 1 30 20
Anna Kopetzki - 2 - 2 - - - - - - - -
Stefan Liu - - - - - - 1 - - - - -
Aaron Pereira - - 7 - - - - - - - - 7
Hendrik Röhm - - - - - - - - - - - 1
Johann Schöpfer - - - - - - 2 - - - - -
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[8] G. Frehse, C. L. Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel, R. Ripado, A. Girard, T. Dang,
and O. Maler, “SpaceEx: Scalable verification of hybrid systems,” in Proc. of the 23rd International
Conference on Computer Aided Verification, ser. LNCS 6806. Springer, 2011, pp. 379–395.

[9] M. Althoff, O. Stursberg, and M. Buss, “Reachability analysis of nonlinear systems with uncertain
parameters using conservative linearization,” in Proc. of the 47th IEEE Conference on Decision and
Control, 2008, pp. 4042–4048.

[10] M. Althoff and G. Frehse, “Combining zonotopes and support functions for efficient reachability
analysis of linear systems,” in Proc. of the 55th IEEE Conference on Decision and Control, 2016,
pp. 7439–7446.

[11] G. Frehse and M. Althoff, Eds., ARCH16. 3rd International Workshop on Applied Verification for
Continuous and Hybrid Systems, ser. EPiC Series in Computing, vol. 43, 2017.

[12] ——, ARCH18. 5th International Workshop on Applied Verification for Continuous and Hybrid
Systems, ser. EasyChair Proceedings in Computing. EasyChair, 2018.

[13] M. Althoff, S. Bak, D. Cattaruzza, X. Chen, G. Frehse, R. Ray, and S. Schupp, “ARCH-COMP17
category report: Continuous and hybrid systems with linear continuous dynamics,” in Proc. of the
4th International Workshop on Applied Verification for Continuous and Hybrid Systems, 2017, pp.
143–159.

[14] M. Althoff, S. Bak, X. Chen, C. Fan, M. Forets, G. Frehse, N. Kochdumper, Y. Li, S. Mitra, R. Ray,
C. Schilling, and S. Schupp, “ARCH-COMP18 category report: Continuous and hybrid systems with
linear continuous dynamics,” in Proc. of the 5th International Workshop on Applied Verification for
Continuous and Hybrid Systems, 2018.

[15] X. Chen, M. Althoff, and F. Immler, “ARCH-COMP17 category report: Continuous systems with
nonlinear dynamics,” in Proc. of the 4th International Workshop on Applied Verification for Con-
tinuous and Hybrid Systems, 2017, pp. 160–169.

[16] F. Immler, M. Althoff, X. Chen, C. Fan, G. Frehse, N. Kochdumper, Y. Li, S. Mitra, M. S. Tomar,
and M. Zamani, “ARCH-COMP18 category report: Continuous and hybrid systems with nonlinear
dynamics,” in Proc. of the 5th International Workshop on Applied Verification for Continuous and
Hybrid Systems, 2018.

[17] A. Girard, “Reachability of uncertain linear systems using zonotopes,” in Hybrid Systems: Compu-
tation and Control, ser. LNCS 3414. Springer, 2005, pp. 291–305.

[18] M. Althoff, “Reachability analysis and its application to the safety assessment of
autonomous cars,” Dissertation, Technische Universität München, 2010, http://nbn-
resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20100715-963752-1-4.

[19] M. Althoff and B. H. Krogh, “Reachability analysis of nonlinear differential-algebraic systems,”
IEEE Transactions on Automatic Control, vol. 59, no. 2, pp. 371–383, 2014.

[20] E. Gover and N. Krikorian, “Determinants and the volumes of parallelotopes and zonotopes,” Linear
Algebra and its Applications, vol. 433, no. 1, pp. 28–40, 2010.

[21] M. Althoff, B. H. Krogh, and O. Stursberg, Modeling, Design, and Simulation of Systems with Un-
certainties. Springer, 2011, ch. Analyzing Reachability of Linear Dynamic Systems with Parametric
Uncertainties, pp. 69–94.

[22] C. Combastel, “A state bounding observer based on zonotopes,” in Proc. of the European Control
Conference, 2003.

104



REFERENCES

[23] M. Althoff and B. H. Krogh, “Zonotope bundles for the efficient computation of reachable sets,” in
Proc. of the 50th IEEE Conference on Decision and Control, 2011, pp. 6814–6821.

[24] M. Althoff, “Reachability analysis of nonlinear systems using conservative polynomialization and
non-convex sets,” in Hybrid Systems: Computation and Control, 2013, pp. 173–182.

[25] J. Hoefkens, M. Berz, and K. Makino, Scientific Computing, Validated Numerics, Interval Methods.
Springer, 2001, ch. Verified High-Order Integration of DAEs and Higher-Order ODEs, pp. 281–292.

[26] M. Althoff, O. Stursberg, and M. Buss, “Safety assessment for stochastic linear systems using en-
closing hulls of probability density functions,” in Proc. of the European Control Conference, 2009,
pp. 625–630.

[27] D. Berleant, “Automatically verified reasoning with both intervals and probability density functions,”
Interval Computations, vol. 2, pp. 48–70, 1993.

[28] G. M. Ziegler, Lectures on Polytopes, ser. Graduate Texts in Mathematics. Springer, 1995.

[29] V. Kaibel and M. E. Pfetsch, Algebra, Geometry and Software Systems. Springer, 2003, ch. Some
Algorithmic Problems in Polytope Theory, pp. 23–47.

[30] M. Berz and G. Hoffstätter, “Computation and application of Taylor polynomials with interval
remainder bounds,” Reliable Computing, vol. 4, pp. 83–97, 1998.

[31] K. Makino and M. Berz, “Remainder Differential Algebras and Their Applications,” 1996. [Online].
Available: http://bt.pa.msu.edu/pub/papers/rdasf/rdasf.pdf

[32] ——, “Taylor models and other validated functional inclusion methods,” International Journal of
Pure and Applied Mathematics, vol. 4, no. 4, pp. 379–456, 2003.

[33] ——, “Rigorous integration of flows and ODEs using Taylor models,” in Proc. of Symbolic-Numeric
Computation, 2009, pp. 79–84.

[34] R. D. Neidinger, “Directions for computing truncated multivariate Taylor series,” Mathematics of
Computation, vol. 74, no. 249, pp. 321–340, 2004.

[35] L. H. de Figueiredo and J. Stolfi, “Affine arithmetic: Concepts and applica-
tions,” Numerical Algorithms, vol. 37, no. 1-4, pp. 147–158, 2004. [Online]. Available:
http://link.springer.com/10.1023/B:NUMA.0000049462.70970.b6
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