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Abstract

In this manual we present the Automated Reachset Optimal Control (AROC) toolbox.
AROC is a MATLAB toolbox that automatically synthesizes verified controllers for solving
reach-avoid problems using reachability analysis. Two different types of controllers are con-
sidered: For model predictive control verified controllers are constructed in real-time during
online application; The motion primitive based control algorithms, on the other hand, first
synthesize verified controllers for many different motion primitives offline, which are then
used for online planning with a maneuver automaton. AROC contains one model predictive
control algorithm for linear systems and one for nonlinear systems, and also implements sev-
eral approaches for computing safe terminal regions for model predictive control. Moreover,
the toolbox currently contains 6 different methods for motion primitive based control, and
also provides an implementation of a maneuver automaton for convenient online-planning
with motion primitives. Yet another feature of AROC is that it includes an implementation
of conformant synthesis to automatically construct over-approximative models from data.
AROC is released under the GPLv3 license.
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1 INTRODUCTION

1 Introduction

In this section we give a short introduction to the philosophy and architecture of the AROC
toolbox, we describe how AROC can be installed, and we explain how to connect AROC with
other tools.

1.1 Getting Started

The acronym AROC stands for Automated Reachset Optimal Control. AROC is a toolbox for
the automated construction of verified controllers for solving reach-avoid problems. A typical
reach-avoid problem is shown in Fig. 1: Given a set of initial states R0 the goal is to construct
a controller that drives all states inside the initial set as close as possible to a desired final state
xf while not colliding with the sets of unsafe sets depicted in red in Fig. 1. For the system
dynamics, we consider the very general case of nonlinear systems with input constraints that are
influenced by bounded uncertainties (see (1)). To verify that the system does not collide with
any unsafe set and that the input constraints are satisfied for all times despite disturbances are
acting on the system, we use reachability analysis. In particular, we use the CORA [1] toolbox
to compute reachable sets.

Figure 1: Illustration of a typical reach-avoid problem, where the unsafe sets are depicted in
red, R0 is the initial set, xf is the goal state that should be reached, and the reachable set of
the controlled system is shown in gray.

AROC considers two different types of controllers for solving reach-avoid problems: For model
predictive control (see Sec. 2.2) a verified controller that steers the system into a safe terminal
region (see Sec. 4) is constructed in real-time during online application; The motion primitive
based control algorithms (see Sec. 2.1), on the other hand, construct verified controllers for
many different motion primitives offline, which are the used for online-planning with a maneuver
automaton (see Sec. 3). To guarantee that the synthesized controllers are safe for the real system
and not just the model, we require a conformant model that over-approximates all behaviours
of the real system. Such a model can be constructed automatically from measurements of the
real system using conformant synthesis (see Sec. 5). An overview of the workflow for controller
synthesis using the AROC toolbox is shown in Fig. 2.

The AROC toolbox provides some predefined benchmark systems (see Sec. 6), and additional
custom benchmarks can be easily added (see Sec. 7.1). To get started with AROC, we recom-
mend to read the mathematical problem description at the beginning of Sec. 2, and to take a
look at the code examples that are provided in Sec. 8, which can also be found in the directory
/examples/... in the AROC toolbox.
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Nominal Model
(see Sec. 6

and Sec. 7.1)

Conformant
Synthesis

(see Sec. 5)

Maneuver Automaton
Construction

(see Sec. 2.1 and Sec. 3)

Motion Planning with
Maneuver Automaton

(see Sec. 3.5)

Termial Region
Computation

(see Sec. 4)

Model Predicitve
Control

(see Sec. 2.2)

Offline Online

Figure 2: Workflow for controller synthesis using the AROC toolbox.

1.2 Installation

The AROC toolbox can be conveniently installed by simply adding the directory that contains
the code to the MATLAB path. In addition, AROC requires the following third-party software:

• CORA: CORA is a MATLAB toolbox for reachability analysis. AROC is compatible with
the 2022 release of CORA, which can be downloaded from the website http://cora.in.

tum.de or the public repository https://github.com/TUMcps/CORA. After the download,
add the folder containing the CORA toolbox to your MATLAB path.

• ACADO: ACADO is a C++ toolbox for solving optimal control problems. AROC re-
quires the MATLAB interface of the ACADO toolbox, which can be found at
http://acado.github.io/matlab_overview.html. AROC also works if ACADO is not
installed, but the computations might be significantly slower.

• MPT and YALMIP: MPT is a toolbox for geometric computations that is used by the
CORA toolbox, and YALMIP is a toolbox for solving optimization problems of various
types. MPT and YALMIP can be conveniently installed together using the installation
routine described in https://www.mpt3.org/Main/Installation.

After installation it is advisable to run the unit-tests (see Sec. 1.6) to check if everything is
set-up correctly.

1.3 New Features

The 2022 release of AROC contains several new features compared to the 2020 release:

• Terminal regions: AROC now includes algorithms for calculating safe terminal regions
for model predictive control (see Sec. 4).

• Conformant synthesis: Conformant models enclosing all possible behaviours of the real
system can now be automatically constructed from measurements of the real system using
the conformant synthesis algorithm provided by AROC (see Sec. 5).

• New algorithms for motion primitive based control: We added several new ap-
proaches for synthesising controllers for single motion primitives, including a polynomial
controller (see Sec. 2.1.4), a controller combining feed-forward and feedback control (see
Sec. 2.1.5), and a safety net controller that can be used to shield unsafe comfort controllers
(see Sec. 2.1.6).

• Linear model predictive control: AROC now contains a specialized model predictive
control algorithm for linear systems (see Sec. 2.2.2)
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1 INTRODUCTION

• Measurement errors: All control algorithms in AROC now support systems with mea-
surement errors.

• New benchmarks: We added several new benchmarks, including a cartpole system, an
autonomous truck, a 2D quadrotor, and a ship (see Sec. 6).

• Animations: AROC can now produce animations which visualize how the control action
influences the system.

1.4 Architecture

A UML class diagram for the AROC toolbox is shown in Fig. 3: All motion primitive based con-
trol algorithms return an object that inherits certain properties and methods from the parent
class objController. These objects store the parameter of the motion primitive, the con-
structed controller, and the occupancy set (see Sec. 7.3). Since the class maneuverAutomaton

requires a list of motion primitives represented as objects of class objController as input ar-
gument (see Sec. 3), it is therefore possible to construct a maneuver automaton with any of
the implemented motion primitive based controllers, or even mix motion primitives generated
with different controllers. Similarly, all objects representing terminal regions inherit from the
common parent class terminalRegion (see Sec. 7.4), which ensures that terminal regions con-
structed with different approaches can be used for model predictive control. The class results
stores the reachable sets computed during controller synthesis and simulated trajectories from
the online application of the control algorithm (see Sec. 7.2).

objController (see Sec. 7.3)

objOptBasedContr

objConvInterpContr

objGenSpaceContr
results (see Sec. 7.2)

maneuverAutomaton (see Sec. 3)

objPolyContr

objCombinedContr

objSafetyNetContr

terminalRegion (see Sec. 7.4)

termRegSubpaving

termRegZonoLinSys

Composition

Generalization

Interface

Figure 3: Unified Modeling Language (UML) class diagram for AROC.
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1.5 Code Documentation

In addition to the documentation provided in this manual AROC has HTML code documentation
that can be viewed and browsed directly in MATLAB. This code documentation contains a short
description as well as a list of input and output arguments for each function contained in the
AROC toolbox. To view the HTML code documentation type the command

>> doc

into the MATLAB command line, which will open a window containing the MATLAB doc-
umentation. The documentation for the AROC toolbox can be found under the menu item
Supplemental Software.

For developers: The HTML code documentation is automatically generated from the function
headers. To generate the documentation type the command

>> pubishHelp

into the MATLAB command line. To generate the HTML documentation for a single MATLAB
function type

>> publishFunc(’fileName’)

which opens a new window showing the generated documentation for the file.

1.6 Unit Tests

In order to guarantee that AROC functions correctly and that there are no bugs in our imple-
mentation we integrated several unit-tests into the toolbox. These tests check for example if the
input and state constraints are satisfied, or that the reachable set contains all trajectories of the
controlled system. In order to execute all unit-tests type the command

>> runUnitTests

into the MATLAB command line. To execute a single unit test, simply type the name of the
test file. All unit-test files are located in the directory /unitTests/... in the AROC toolbox.

It is advisable to run the unit-tests after installation to check if everything is set-up correctly.
Developers should run the unit test every time they changed something on the implementation
of the algorithms.

1.7 Connections to CommonRoad and CommonOcean

The CommonRoad framework [2] provides multiple thousands of different traffic scenarios as
benchmarks for testing motion planning algorithms for autonomous cars. Similarly, CommonO-
cean [3] provides marine traffic scenarios for autonomous ships. AROC provides interfaces to
easily load CommonRoad and CommonOcean benchmarks for testing the control algorithms.
In order to load a CommonRoad or CommonOcean benchmark into AROC, the following two
steps are required:

1. Download the CommonRoad or CommonOcean file for the selected traffic scenario from
the corresponding website https://commonroad.in.tum.de or https://commonocean.

cps.cit.tum.de

2. Use the function commonroad2cora or commonocean2cora provided by the CORA toolbox
[1] to load initial state, goal set, as well as static and dynamic obstacles for the planning
problem.
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1 INTRODUCTION

The syntax for loading a CommonRoad or CommonOcean file with the function commonroad2cora

or commonocean2cora is as follows:

[statObs, dynObs, x0, goalSet, lanelets] = commonroad2cora(filename)

[statObs, dynObs, x0, goalSet, waters, shallows] = commonocean2cora(filename),

where filename is a string with the file name of the CommonRoad or CommonOcean file that
should be loaded, and the output arguments are defined as:

• statObs MATLAB cell-array storing the static obstacles for the planning problem as
objects of class polygon (see [4]).

• dynObs MATLAB cell-array storing the dynamic obstacles for the planning problem as
objects of class polygon (see [4]). In addition, the corresponding time interval
for each obstacle is stored.

• x0 struct with fields .x, .y, .time, .velocity and .orientation storing the
initial state for the planning problem.

• goalSet struct with fields .set, .time, .velocity and .orientation storing the goal
set for the planning problem.

• lanelets MATLAB cell-array storing the lanelets for the traffic scenario as objects of
class polygon (see [4]).

• waters MATLAB cell-array storing the water ways for the marine traffic scenario as
objects of class polygon (see [4]).

• shallows MATLAB cell-array storing the shallows for the marine traffic scenario as
objects of class polygon (see [4]).

Initial state, goal set, static obstacles, and dynamic obstacles can then be used for online planning
with a maneuver automaton as described in Sec. 3.5. In Fig. 4 an exemplary CommonRoad traffic
scenario is visualized. A code example that demonstrates how a CommonRoad benchmark can be
solved with AROC is provided in Sec. 8.3 and in the directory /example/maneuverAutomaton/...
in the AROC toolbox.
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Figure 4: Visualization of the CommonRoad benchmark DEU Ffb-1 2 S-1. The dynamic ob-
stacles imposed by the other cars are shown in blue, the goal set is shown in red, and the initial
state for the ego vehicle is shown in green.
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2 Control Algorithms

AROC is a toolbox that automatically synthesizes verified controllers for solving reach-avoid
problems. We consider general nonlinear disturbed systems with measurement uncertainty de-
fined by the differential equation

ẋ(t) = f(x(t), u(t), w(t)), x(0) ∈ R0, x(t) ∈ X , u(t) ∈ U , w(t) ∈ W, (1)

where x(t) ∈ Rn is the vector of system states, u(t) ∈ Rm is the vector of control inputs,
w(t) ∈ Rq is the vector of disturbances and f : Rn × Rm × Rq → Rn is a Lipschitz continuous
function. Furthermore, we consider a set of initial states R0 ⊂ Rn, a set of state constraints
X ⊂ Rn, a set of input constraints U ⊂ Rm, and a set of disturbances W ⊂ Rq. The measured
system state x̂(t) ∈ Rn is subject to an uncertain measurement error v(t) ∈ Rn:

x̂(t) = x(t) + v(t), v(t) ∈ V, (2)

where V ⊂ Rn is the set of measurement errors. Given a control law uc(x̂(t), t), the dynamic of
the controlled system is

ẋ(t) = f(x(t), uc(x̂(t), t), w(t)). (3)

Let us denote the solution to (3) at time t by ξ(t, x(0), uc(·), w(·), v(·)). The reachable set of the
controlled system in (3) is defined as

Ruc(·)(t) =
{
ξ
(
t, x(0), uc(·), w(·), v(·)

) ∣∣∣ x(0) ∈ R0, ∀τ ∈ [0, t] : w(τ) ∈ W ∧ v(τ) ∈ V
}
. (4)

AROC automatically synthesizes a suitable control law uc(x̂(t), t) such that input and state
constraints are satisfied:

∀t ∈ [0, tf ], ∀x̂(t) ∈ Ruc(·)(t)⊕ V : uc(x̂(t), t) ∈ U
∀t ∈ [0, tf ], ∀x(0) ∈ R0, ∀w(·) ∈ W, ∀v(·) ∈ V : ξ

(
t, x(0), uc(·), w(·), v(·)

)
∈ X ,

(5)

where tf is the final time of the control action. The objective that the controller aims to fulfill
depends on the controller type: The motion primitive based control algorithms in Sec. 2.1 aim
to drive all states from the initial set at the final time tf as close as possible to a desired final
state xf ∈ Rn. The model predictive control algorithm in Sec. 2.2 on the other hand tries to
stabilize the system around a desired equilibrium point xf for an infinite time horizon tf =∞.
To achieve this, the model predictive control algorithm considers a terminal region T around
xf , and the goal is to reach this terminal region in finite time.

Many of the control algorithms implemented in AROC require to solve optimal control problems.
An optimal control problem finds the control input that minimizes a certain cost function [5].
In this toolbox we consider optimal control problems defined as

min
u(t)

(
x(tf )− xf

)T ·Q · (x(tf )− xf
)

+

∫ tf

t=0
u(t)T ·R · u(t) dt

s.t. ẋ(t) = f(x(t), u(t),0),

(6)

where the input u(t) is piecewise constant, Q ∈ Rn×n is the state weighting matrix, and R ∈
Rm×m is the input weighting matrix.

Next, we describe the different control algorithms implemented in AROC in detail.

9



2 CONTROL ALGORITHMS

2.1 Motion Primitive Based Control

The motion primitive based control algorithms described in this chapter automatically synthe-
size feasible and close-to-optimal controllers for single motion primitives offline. These motion
primitives can be used to construct a maneuver automaton (see Sec. 3), which is then applied
for online control (see Sec. 3.5).

For each motion primitive the goal of the control action is to drive all states inside the initial
set at the final time tf as close as possible to the desired final state xf :

min
uc(x,t)

ρ
(
Ruc(·)(tf ), xf

)
, (7)

where Ruc(·)(tf ) is the reachable set of the controlled system at the final time tf (see (4)), and

ρ(Ruc(·)(tf ), xf )→ R+
0 is a cost function measuring the distance between the states in Ruc(·)(tf )

and the desired final state xf . There exist many different possibilities for suitable cost functions,
like for example the maximum euclidean distance:

ρ
(
Ruc(·)(tf ), xf

)
= max

x∈Ruc(·)(tf )
||x− xf ||2.

The syntax for executing the control algorithm to synthesize a suitable controller is identical for
all motion primitive based control algorithms:

[obj, res] = controlAlgorithmName(benchmark, Param)

[obj, res] = controlAlgorithmName(benchmark, Param, Opts)

[obj, res] = controlAlgorithmName(benchmark, Param, Opts, Post),

where controlAlgorithmName ∈ {optimizationBasedControl, convexInterpolationControl,
generatorSpaceControl} is the name of the control algorithm, the input arguments are defined
as

• benchmark name of the benchmark system that is considered (see Sec. 6).

• Param struct containing the parameter that define the control problem

– .R0 initial set R0 (see (1)) represented as an object of class
interval (see [4, Sec. 2.2.1.2]).

– .U set of input constraints U (see (1)) represented as an object
of class interval (see [4, Sec. 2.2.1.2]).

– .W set of disturbances W (see (1)) represented as an object of
class interval or zonotope (see [4, Sec. 2.2.1]).

– .V set of measurement errors V (see (2)) represented as an ob-
ject of class interval or zonotope (see [4, Sec. 2.2.1]).

– .X set of state constraints X (see (1)) represented as an object
of class mptPolytope (see [4, Sec. 2.2.1.4]).

– .tFinal final time tf (see (7)).

– .xf desired final state xf (see (7)).

• Opts struct containing the settings for the control algorithm. Since the settings are
different for each control algorithm they are documented in Sec. 2.1.1, 2.1.2,
and 2.1.3.

• Post MATLAB function handle to the post-processing function that computes the
occupancy set from the reachable set (see Sec. 3.2). This argument is only
required if the motion primitive controller is used to construct a maneuver
automaton (see Sec. 3).

10



2 CONTROL ALGORITHMS

and the output arguments are defined as

• obj object of class contrObj (see Sec. 7.3) that stores the synthesized control law.

• res object of class result (see Sec. 7.2) that stores the computed reachable set of
the controlled system.

In the following sections we describe the motion primitive based control algorithms that are
implemented in AROC in detail.

2.1.1 Optimization Based Control

Optimization-based control implements the control algorithm described in [6]. While the work
in [6] specialized on linear systems, we extended the approach to also handle systems with
nonlinear dynamics. However, since reachability analysis for linear systems is computationally
much more efficient than reachability analysis for nonlinear systems, our implementation of
the algorithm detects automatically if the system is linear or nonlinear and then executes the
corresponding reachability algorithm.

Figure 5: Illustration of the optimization based control algorithm with N = 3 constant segments.

The control algorithm uses the following control law:

uc(x̂, t) = uref (t) +K(t)(x̂(t)− xref (t)),

where uref (t) ∈ Rm is the piecewise constant control input for the reference trajectory (see
Sec. 7.5), xref (t) ∈ Rn is the state of the reference trajectory (see Sec. 7.5), and K(t) ∈ Rm×n is
a time-varying feedback matrix. The optimization based control algorithm determines a feasible
and close-to-optimal value for the time-varying feedback matrix K(t) by solving the following
optimization problem:

min
K(t)

ρ
(
Ruc(·)(tf ), xf

)
s.t. ∀t ∈ [0, tf ], ∀x̂(t) ∈ Ruc(·)(t)⊕ V : uref (t) +K(t)(x̂(t)− xref (t)) ∈ U
∀t ∈ [0, tf ], ∀x(0) ∈ R0, ∀w(·) ∈ W, ∀v(·) ∈ V : ξ

(
t, x(0), uc(·), w(·), v(·)

)
∈ X ,

(8)

where ρ(·) is the cost function (see (7)). In order to express the optimization problem with a
finite number of optimization variables, a piecewise constant time-varying feedback matrix K(t)
is used: ∀t ∈ [(i − 1)∆t, i∆t] : K(t) = Ki, i ∈ {1, . . . , N}, where ∆t = tf/N and N ∈ N≥1
is the number of piecewise constant segments (see Fig. 5). Furthermore, in order to reduce the
number of variables for the optimization problem, we use a Linear Quadratic Regulator (LQR)
approach [7, Chapter 3.3] to compute the feedback matrices Ki. Instead of directly optimizing
the feedback matrices Ki we then optimize the weighting matrices Q ∈ Rn×n, R ∈ Rm×m from
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the cost function of the Linear Quadratic Regulator, where we choose the weighting matrices to
be diagonal. For solving the optimization problem (8), we use MATLABs fmincon algorithm1.

The syntax for executing the optimization based control algorithm is as follows:

[obj, res] = optimizationBasedControl(benchmark, Param)

[obj, res] = optimizationBasedControl(benchmark, Param, Opts)

[obj, res] = optimizationBasedControl(benchmark, Param, Opts, Post),

where benchmark, Param, Post, obj, and res are defined as at the beginning of Sec. 2.1, and
Opts is a struct that contains the following algorithm settings:

– .N number of piecewise constant segments N for the time-varying
feedback matrix K(t). The default value is 5.

– .reachSteps number of time steps for reachability analysis during one of the N
piecewise constant segments. The default value is 10.

– .reachStepsFin number of time steps for reachability analysis during one of the
N piecewise constant segments for the computation of the final
reachable set after the optimization finished. To accelerate the
optimization it is advisable to use less reachability time steps dur-
ing optimization than for the computation of the final reachable
set. The default value is 15.

– .maxIter maximum number of iterations for MATLABs fmincon algorithm
that is used to solve the optimization problem (8) (see https:

//de.mathworks.com/help/optim/ug/fmincon.html). The de-
fault value is 100.

– .bound scaling factor δ between the upper and the lower bound for the
entries of the LQR weighting matrices Q and R. It holds for all
matrix entries Qi,j and Ri,j that Qi,j ∈ [1/δ, δ] and Ri,j ∈ [1/δ, δ].
The default value is 1000.

– .refTraj struct containing the settings for the reference trajectory (see
Sec. 7.5).

– .cora struct containing the settings for reachability analysis using the
CORA toolbox (see Sec. 7.7).

Code examples for the optimization based control algorithm are provided in Sec. 8.1 and in the
directory /example/optimizationBasedControl/... in the AROC toolbox.

2.1.2 Convex Interpolation Control

The convex interpolation control algorithm implements the approach in [8]. For convex inter-
polation control the time horizon is divided into N time steps, where in each time step the
following procedure is applied (see Fig. 6):

1. The reachable set at the beginning of the time step is enclosed by a parallelotope.

2. Optimal control problems (see (6)) are solved for all vertices of the parallelotope.

3. The control law is obtained by interpolation between the optimal control inputs for the
parallelotope vertices (see [8, Sec. 4]).

1https://de.mathworks.com/help/optim/ug/fmincon.html
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Since the interpolation control law in [8, Sec. 4] is quite complex, it is often advisable to use
a linear or a quadratic approximation instead (see [8, Sec. 5]). While the optimization based
controller in Sec. 2.1.1 considers continuous feedback, the convex interpolation control algorithm
only measures the system state at the beginning of each time step, which results in discrete-time
feedback. Each time step consists of Ninter intermediate time steps, which correspond to the
piecewise constant segments of the control input for the optimal control problems.

Figure 6: Illustration of the convex interpolation control algorithm with N = 3 time steps.

The syntax for executing the convex interpolation control algorithm is as follows:

[obj, res] = convexInterpolationControl(benchmark, Param)

[obj, res] = convexInterpolationControl(benchmark, Param, Opts)

[obj, res] = convexInterpolationControl(benchmark, Param, Opts, Post),

where benchmark, Param, Post, obj, and res are defined as at the beginning of Sec. 2.1, and
Opts is a struct that contains the following algorithm settings:

– .controller string specifying the control law that is used. The available control laws
are ’exact’ (interpolation control law, see [8, Sec. 4]), ’quadratic’

(quadratic approximation), and ’linear’ (linear approximation, see [8,
Sec. 5]). The default value is ’linear’.

– .N number of time steps N . The default value is 10.

– .Ninter number of intermediate time steps Ninter. The default value is 4.

– .reachSteps number of time steps for reachability analysis during one of the Ninter

intermediate time steps. The default value is 20.

– .Q state weighting matrix Q ∈ Rn×n for the optimal control problems (see
(6)). The default value is the identity matrix.

– .R input weighting matrix R ∈ Rm×m for the optimal control problems (see
(6)). The default value is an all-zero matrix.

– .parallel flag specifying if parallel computing is used (Opts.parallel = 1) or not
(Opts.parallel = 0). The default value is 0.

– .approx struct containing the settings for the approximation of the interpolation
control law (for Opts.controller = ’linear’ and Opts.controller

= ’quadratic’ only).

13
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– .method string specifying the method that is used to obtain the
approximated control law. The available methods are
’scaled’, ’optimized’, and ’center’. The default
value is ’scaled’.

– .lambda parameter λ ∈ [0, 1] representing the tradeoff between
matching the optimal control inputs at the vertices (λ =
0) and matching the interpolation control law (λ = 1).
The default value is 0.5.

– .polyZono struct containing the settings for restructuring polynomial zonotopes
(for Opts.cora.alg = ’poly’ only).

– .N number of time steps after which the polynomial zono-
tope representing the reachable set is restructured.
The default value is ∞ (no restructuring).

– .orderDep zonotope order of the dependent part of the polyno-
mial zonotope after restructuring. The default value
is 10.

– .order overall zonotope order of the polynomial zonotope af-
ter restructuring. The default value is 20.

– .refTraj struct containing the settings for the reference trajectory (see Sec. 7.5).

– .extHorizon struct containing the settings for an extended optimization horizon (see
Sec. 7.6).

– .cora struct containing the settings for reachability analysis using the CORA
toolbox (see Sec. 7.7).

Code examples for the convex interpolation control algorithm are provided in the directory
/example/convexInterpolationControl/... in the AROC toolbox.

2.1.3 Generator Space Control

One of the main disadvantages of the convex interpolation controller in Sec. 2.1.2 is that the
computational complexity grows exponentially with the number of system dimensions n. The
reason for this is that for convex interpolation control an optimal control problem is solved for
each vertex of a parallelotope enclosure of the reachable set, and a parallelotope has 2n vertices.
The generator space controller proposed in [9] circumvents this problem by solving one optimal
control problem for each generator of the parallelotope, instead of for each vertex (see Fig. 7).
Since a parallelotope has only n generators, this is computationally much more efficient.

Figure 7: Illustration of the generator space control algorithm with N = 3 time steps.

As for convex interpolation control, the time horizon is divided into N time steps, and a feed-
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forward controller is computed for each of these time steps. Furthermore, each time step consists
of Ninter intermediate time steps, which correspond to the piecewise constant segments of the
control input for the optimal control problems. To obtain the control law from the optimal
control inputs for the generators, the generator space controller expresses each state inside the
reachable set as a linear combination of the generators.

The syntax for executing the generator space control algorithm is as follows:

[obj, res] = generatorSpaceControl(benchmark, Param)

[obj, res] = generatorSpaceControl(benchmark, Param, Opts)

[obj, res] = generatorSpaceControl(benchmark, Param, Opts, Post),

where benchmark, Param, Post, obj, and res are defined as at the beginning of Sec. 2.1, and
Opts is a struct that contains the following algorithm settings:

– .N number of time steps N . The default value is 10.

– .Ninter number of intermediate time steps Ninter. The default value is 4.

– .reachSteps number of time steps for reachability analysis during one of the
Ninter intermediate time steps. The default value is 10.

– .Q state weighting matrix Q ∈ Rn×n for the optimal control problems
(see (6)). The default value is the identity matrix.

– .R input weighting matrix R ∈ Rm×m for the optimal control prob-
lems (see (6)). The default value is an all-zero matrix.

– .refInput flag specifying if the control input from the reference trajectory is
used to control the center of the reachable set (Opts.refInput =
1) or not (Opts.refInput = 0). The default value is 0.

– .refTraj struct containing the settings for the reference trajectory (see
Sec. 7.5).

– .extHorizon struct containing the settings for an extended optimization horizon
(see Sec. 7.6).

– .cora struct containing the settings for reachability analysis using the
CORA toolbox (see Sec. 7.7).

Code examples for the generator space control algorithm are provided in the directory /exam-
ple/generatorSpaceControl/... in the AROC toolbox.

2.1.4 Polynomial Control

The polynomial control approach proposed in [10] is similar to the generator space controller in
Sec. 2.1.3, but applies a polynomial instead of a linear control law. Moreover, rather than solving
optimal control problems the polynomial control approach utilizes dependency preservation [11]
for polynomial zonotopes [12] to determine the optimal control law parameters with the following
procedure (see Fig. 8):

1. Compute the reachable set for the set of all parameter values that satisfy the input con-
straints.

2. Utilize the analytical relation between parameter values and reachable states given by
dependency preservation to determine the control law parameters that minimize the size
of the final reachable set.
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Equivalently to the generator space controller, the polynomial controller divides the time horizon
into N time steps consisting of Ninter segments with constant control inputs, and encloses the
reachable set by a parallelotope at the end of each time step. To refine the estimate for the set
of control law parameters that satisfy the input constraints, the reachable set can be splitted
multiple times.

Figure 8: Illustration of the polynomial control algorithm with N = 3 time steps.

The syntax for executing the polynomial control algorithm is as follows:

[obj, res] = polynomialControl(benchmark, Param)

[obj, res] = polynomialControl(benchmark, Param, Opts)

[obj, res] = polynomialControl(benchmark, Param, Opts, Post),

where benchmark, Param, Post, obj, and res are defined as at the beginning of Sec. 2.1, and
Opts is a struct that contains the following algorithm settings:

– .N number of time steps N . The default value is 10.

– .Ninter number of intermediate time steps Ninter. The default value is 4.

– .ctrlOrder polynomial degree of the polynomial control law. The default
value is 2, which corresponds to a quadratic controller.

– .reachSteps number of time steps for reachability analysis during one of the
Ninter intermediate time steps used for computing the reachable
set for the set of all parameter values. The default value is 10.

– .reachStepsFin number of time steps for reachability analysis during one of the
Ninter intermediate time steps used for computing the final reach-
able set after control law parameter optimization. The default
value is 20.

– .Q state weighting matrix Q ∈ Rn×n for the cost function that is min-
imized in order to determine the optimal control law parameters.
The default value is the identity matrix.

– .splits number of splits applied to refine the set of parameters that sat-
isfies the input constraints. The default value is 0.

– .refInput flag specifying if the control input from the reference trajectory is
used to control the center of the reachable set (Opts.refInput =
1) or not (Opts.refInput = 0). The default value is 0.

– .refUpdate flag specifying if the reference trajectory is updated after each time
step (Opts.refUpdate = 1) or not (Opts.refUpdate = 0). The
default value is 0.
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– .refTraj struct containing the settings for the reference trajectory (see
Sec. 7.5).

– .extHorizon struct containing the settings for an extended optimization horizon
(see Sec. 7.6).

– .cora struct containing the settings for reachability analysis using the
CORA toolbox (see Sec. 7.7).

Code examples for the polynomial control algorithm are provided in the directory /example/poly-
nomialControl/... in the AROC toolbox.

2.1.5 Combined Control

Combined control implements the control algorithm described in [13], which combines continuous
feedback based on the optimization based control algorithm in Sec. 2.1.1 with feed-forward
control based on the generator space control algorithm in Sec. 2.1.3. Due to the continuous
feedback, the optimization based controller is very robust against disturbances. However, since
the control law tracks the reference trajectory and the distance between reachable states and
reference trajectory can be quite large, the feedback matrices that are automatically determined
by the algorithm are usually quite conservative to guarantee that the input constraints are
satisfied. In order to avoid the disadvantage and use more aggressive feedback matrices for
faster disturbance rejection the combined control algorithm uses a different reference trajectory
for each state inside the initial set. In summary, the control algorithm consists of the following
two steps:

1. Feed-forward control: Compute an initial-state-dependent reference trajectory using
the generator space control algorithm.

2. Continuous feedback: Use optimization to compute a suitable feedback matrix for
tracking the initial-state-dependent reference trajectory.

An illustration of the combined control algorithm is shown in Fig. 9.

Figure 9: Illustration of the combined control algorithm.

The combined control algorithm uses the following control law:

uc(x̂, x(0), t) = uff (x(0), t) +K(x̂(t)− xff (x(0), t)), (9)

where uff (x(0), t) ∈ Rm and xff (x(0), t) ∈ Rn represent the control inputs and the states of the
initial-state-dependent reference trajectory computed with the generator space control algorithm
in Sec. 2.1.3. The control input uff (x(0), t) is piecewise constant, where the number of pieces
is N ∈ N≥0. To leave some control input for the feedback controller, the feed-forward control
law uff (x(0), t) is computed using a set of tightend input constraints U ⊂ U . The feedback
matrix K ∈ Rm×n for the control law in (9) is determined by solving the following optimization
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problem:

min
K

max
x∈Ruc(·)(tf )

||Q · (x− xf )||1 +

∫ tf

0
max

x∈Ruc(·)(t)
||R · uc(x, x(0), t)||1 dt︸ ︷︷ ︸

ρ
(
Ruc(·)(tf ),xf

)
.

s.t. ∀t ∈ [0, tf ], ∀x̂(t) ∈ Ruc(·)(t)⊕ V : uff (x(0), t) +K(x̂(t)− xff (x(0), t) ∈ U
∀t ∈ [0, tf ], ∀x(0) ∈ R0, ∀w(·) ∈ W, ∀v(·) ∈ V : ξ

(
t, x(0), uc(·), w(·), v(·)

)
∈ X .

(10)

In order to reduce the number of variables for the optimization problem, we use a Linear
Quadratic Regulator (LQR) approach [7, Chapter 3.3] to compute the feedback matrix K. In-
stead of directly optimizing the feedback matrix K we then optimize the weighting matrices
Q ∈ Rn×n, R ∈ Rm×m from the cost function of the Linear Quadratic Regulator, where we
choose the weighting matrices to be diagonal. For solving the optimization problem (10), we
use MATLABs fmincon algorithm2. Instead of the generator space controller, it is also possible
to use the polynomial controller from Sec. 2.1.4 as the feed-forward controller.

The syntax for executing the combined control algorithm is as follows:

[obj, res] = combinedControl(benchmark, Param)

[obj, res] = combinedControl(benchmark, Param, Opts)

[obj, res] = combinedControl(benchmark, Param, Opts, Post),

where benchmark, Param, Post, obj, and res are defined as at the beginning of Sec. 2.1, and
Opts is a struct that contains the following algorithm settings:

– .N number of piecewise constant segments N for feed-forward control
inputs uff (x(0), t). The default value is 5.

– .feedForward feed-forward controller used, which can either be the gen-
erator space controller from Sec. 2.1.3 (Opts.feedForward
= ’genSpace’) or the polynomial controller from Sec. 2.1.4
(Opts.feedForward = ’poly’). The default is the generator
space controller.

– .reachSteps number of time steps for reachability analysis during one of the N
piecewise constant segments. The default value is 10.

– .reachStepsFin number of time steps for reachability analysis during one of the
N piecewise constant segments for the computation of the final
reachable set after the optimization finished. To accelerate the
optimization it is advisable to use less reachability time steps dur-
ing optimization than for the computation of the final reachable
set. The default value is 50.

– .scale: scaling factor used to determine set of tightened input constraints
U ⊂ U . The default value is 0.9.

– .Q state weighting matrix Q ∈ Rn×n for the cost function
ρ
(
Ruc(·)(tf ), xf

)
in (10). The default value is the identity ma-

trix.

– .R input weighting matrix R ∈ Rm×m for the cost function
ρ
(
Ruc(·)(tf ), xf

)
in (10). The default value is an all-zero matrix.

2https://de.mathworks.com/help/optim/ug/fmincon.html
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– .Qff state weighting matrix Q ∈ Rn×n for the feed-forward controller
(see Sec. 2.1.3). The default value is the identity matrix.

– .Rff input weighting matrix R ∈ Rm×m for the feed-forward controller
(see Sec. 2.1.3). The default value is an all-zero matrix.

– .finStateCon flag specifying whether the additional constraint that the final
reachable set has to be located inside the shifted initial set is
applied (Opts.finStateCon = true) or not (Opts.finStateCon
= false). The default value is false.

– .maxIter maximum number of iterations for MATLABs fmincon algorithm
that is used to solve the optimization problem (8) (see https:

//de.mathworks.com/help/optim/ug/fmincon.html). The de-
fault value is 5.

– .bound scaling factor δ between the upper and the lower bound for the
entries of the LQR weighting matrices Q and R used to calculate
the feedback matrix K. It holds for all matrix entries Qi,j and
Ri,j that Qi,j ∈ [1/δ, δ] and Ri,j ∈ [1/δ, δ]. The default value is
1000.

– .refTraj struct containing the settings for the reference trajectory (see
Sec. 7.5).

– .cora struct containing the settings for reachability analysis using the
CORA toolbox (see Sec. 7.7).

Code examples for the combined control algorithm are provided in the directory /example/com-
binedControl/... in the AROC toolbox.

2.1.6 Safety Net Control

While all previous control algorithms introduced in this section are able to guarantee safety, they
are usually not optimal with regard to other criteria such as comfort, energy consumption, or
low wear. To solve this issue, safety net control implements the control algorithm in [14], where
a safety controller is used as a safety net for a comfort controller that shows good performance
with regard to the afore mentioned criteria. To guarantee safety for the overall control approach,
we perform the following procedure for each time step during online execution of the controller
(see Fig. 10):

1. We compute the reachable set of the comfort controller to check if the comfort controller
satisfies input and state constraints.

2. If the comfort controller is safe, we apply the comfort controller for the current time step.

3. If the comfort controller is not safe or the final reachable set is outside the reachable set
of the safety controller, we apply the safety net controller for the current time step.

Since our goal is to minimize the number of cases where the safety controller has to take over,
we want to design a safety net controller that maximizes the size of the reachable set to give the
comfort controller some space. To achieve this, the safety net controller is computed based on
backward reachable sets, where the shifted initial set R0−center(R0) +xf is used as a goal set
that should be reached at the end of the time horizon tf . The control law is then computed by
optimization with the goal to maximize the size of the set that can be controlled into the goal
set. Moreover, the time horizon is divided into N time steps, where in each time step either the
comfort controller or the safety controller is active. Each time step is again divided into Ninter
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Figure 10: Illustration of the safety net control algorithm with N = 3 time steps, where the
comfort controller is applied during the first two time steps, and the safety net controller takes
over during the last time step.

intermediate time steps, which correspond to the number of input changes for the safety control
law.

One problem that we are facing during online application of the controller is that the compu-
tation of the reachable set for the comfort controller requires a certain computation time tcomp.
During this time, however, the system will evolve further so that the state of the system after
the computation finished will be different from the state that we measured before the compu-
tation, which would make the computed reachable set invalid. To solve this issue, the safety
net control algorithm first predicts with reachability analysis where the system will be after the
computation finished, and then computes the reachable set starting from the set of predicted
states.

Currently, a Linear Quadratic Regulator (LQR) and a Model Predictive Controller (MPC) are
implemented as comfort controllers in AROC. Custom comfort controllers can be conveniently
added as described in Sec. 7.8.

The syntax for executing the generator space control algorithm is as follows:

[obj, res] = safetyNetControl(benchmark, Param)

[obj, res] = safetyNetControl(benchmark, Param, Opts)

[obj, res] = safetyNetControl(benchmark, Param, Opts, Post),

where benchmark, Param, Post, obj, and res are defined as at the beginning of Sec. 2.1, and
Opts is a struct that contains the following algorithm settings:

– .N number of time steps N . The default value is 10.

– .Ninter number of intermediate time steps Ninter. The default value is 4.

– .reachSteps number of time steps for reachability analysis during one of the
Ninter intermediate time steps. The default value is 10.

– .order maximum zonotope order for backward reachable sets. The default
value is 3.

– .iter number of iterations for backward reachable set refinement. The
default value is 1.

– .realTime flag specifying if the algorithm only applies the comfort controller
if the computation time is less than the allocated time Opts.tComp
(Opts.realTime = 1), or if this real-time constraint is not consid-
ered (Opts.realTime = 0). The default value is 0.
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– .tComp allocated computation time tcomp.

– .controller string specifying the name of the comfort controller that is ap-
plied during online execution (see Sec. 7.8). Currently, the con-
trollers ’LQR’ and ’MPC’ are available. If multiple comfort con-
troller should be applied in parallel, Opts.controller is specified
as a cell-array.

– .contrOpts struct containing the settings for the comfort controller (see
Sec. 7.8). If multiple comfort controller should be applied in par-
allel, Opts.contrOpts is specfied as a cell-array.

– .refTraj struct containing the settings for the reference trajectory (see
Sec. 7.5).

– .cora struct containing the settings for reachability analysis using the
CORA toolbox (see Sec. 7.7).

Code examples for the safety net control algorithm are provided in the directory /example/safe-
tyNetControl/... in the AROC toolbox.

2.2 Model Predictive Control

Model predictive control (MPC) aims to stabilize the system for an infinite time horizon tf =∞.
To achieve this, we consider a terminal region T (see Sec. 4) around the equilibrium point xf ∈ T
for which we have a controller that is guaranteed to stabilize the system around xf for all states
inside the terminal region. The goal is then to synthesize a suitable control law uc(x̂(t), t) that
drives the system from its current state to the terminal region while minimizing the cost function

J(x, u) =
(
x(topt)− xf

)T ·Q · (x(topt)− xf
)

+

∫ topt

t=0
u(t)T ·R · u(t) dt, (11)

where topt is the lookahead time. For controller synthesis we then apply the following procedure
(see Fig. 11) which is commonly used in MPC:

1. Based on the current measurement of the system state x̂(t), we compute an optimal control
law uc(x̂(t), t) that minimizes the cost function J(x, u) and guarantees that the system
reaches the terminal region T after time topt.

2. We apply the optimal control law uc(x̂(t), t) for the time period t ∈ [0, topt/N ], where N
is the number of time steps.

3. We measure the system state and try to compute a control law uc(x̂(t), t) with lower costs
than the old control law uc(x̂(t), t) based on the updated system state.

This procedure is repeated until the system reaches the terminal region. To guarantee that
the terminal region is reached in finite time we consider an additional contraction constraint
(see [15, Eq. (13)]) when optimizing the control law uc(x̂(t), t). One key difference of the MPC
algorithms in AROC compared to other MPC approaches is that reachability analysis is used to
verify that input and state constraints are satisfied despite disturbances acting on the system.

One problem that we are facing with the procedure described above is that the computation
of the new optimal control law uc(x̂(t), t) as well as the verification of the control law using
reachability analysis require a certain computation time tcomp. During this time, however, the
system will evolve further so that the state of the system after the computation finished will
be different from the state that we measured before the computation. Since we computed
and verified the new optimal control law based on the state measured before the start of the
computation, our new control law would therefore be invalid. To solve this issue the reachset
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Figure 11: Illustration of model predictive control based on reachable sets.

MPC algorithm first predicts with reachability analysis where the system will be after the
computation finished, and then computes a new optimal control law based on the set of predicted
states (see Fig. 11).

The syntax for running the control algorithm is identical for all model predictive controllers
implemented in AROC:

res = controlAlgorithmName(benchmark, Param, Opts),

where controlAlgorithmName ∈ {reachsetMPC, linSysMPC} is the name of the MPC control
algorithm and the input arguments are defined as

• benchmark name of the benchmark system that is considered (see Sec. 6).

• Param struct containing the parameter that define the control problem

– .x0 initial state x(0) ∈ Rn.

– .xf desired final state xf (see (7)).

– .U set of input constraints U (see (1)) represented as an object of
class interval (see [4, Sec. 2.2.1.2]).

– .W set of disturbances W (see (1)) represented as an object of class
interval or zonotope (see [4, Sec. 2.2.1]).

– .V set of measurement errors V (see (2)) represented as an object of
class interval or zonotope (see [4, Sec. 2.2.1]).

– .X set of state constraints X (see (1)) represented as an object of class
mptPolytope (see [4, Sec. 2.2.1.4]).

• Opts struct containing the settings for the control algorithm.

and the output arguments are defined as

• res object of class result (see Sec. 7.2) that stores the computed reachable set of
the controlled system.

In the following sections we describe the model predictive control algorithms that are imple-
mented in AROC in detail.

2.2.1 Reachset Model Predictive Control

For model predictive control of nonlinear systems AROC implements the reachset MPC algo-
rithm in [15]. This algorithm applies the tracking controller

uc(x̂(t), t) = uref (t) +K(t)(x̂(t)− xref (t)), (12)
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which is synthesized using the following three step procedure:

1. The piecewise constant reference input uref (t) for the reference trajectory xref (t) is deter-
mined by solving an optimal control problem that minimizes the cost function J(x, u) in
(11). The number of piecewise constant segments for uref (t) is N ·Ninter and a tightened
set of input constraints U ⊆ U as well as a tightend set of state constraints X ⊆ X are
used so that some control input and space is left for the feedback part of the tracking
controller.

2. The feedback matrix K(t) is determined by applying the Linear Quadratic Regulator
(LQR) approach [7, Chapter 3.3] with weighting matrices Qlqr and Rlqr to the linearized
system.

3. The reachable set of the controlled system is computed to check if the synthesized controller
uc(x̂(t), t) is robustly safe despite disturbances and measurement errors.

The syntax for running the reachset model predictive control algorithm is as follows:

res = reachsetMPC(benchmark, Param, Opts)

where benchmark, Param, and res are defined as at the beginning of Sec. 2.2, and Opts is a
struct that contains the following algorithm settings:

– .tOpt lookahead time topt (see Sec. 2.2).

– .N number of time steps N . The default value is 10.

– .Ninter number of intermediate time steps Ninter. The default value is 1.

– .reachSteps number of time steps for reachability analysis during one of the
Ninter time steps. The default value is 10.

– .scale: scaling factor used to determine the tightend input and state con-
straints U and X from the sets U and X . The default value is 0.9.

– .termReg: terminal region T represented as an object of class mptPolytope

(see [4, Sec. 2.2.1.4]) or class terminalRegion (see Sec. 4).

– .Q state weighting matrix Q ∈ Rn×n for the cost function J(x, u) in
(11). The default value is the identity matrix.

– .R input weighting matrix R ∈ Rm×m for the cost function J(x, u) in
(11). The default value is an all-zero matrix.

– .Qlqr state weighting matrix Qlqr ∈ Rn×n used to compute the feedback
matrix K for the tracking controller (12) with an LQR approach.
The default value is the identity matrix.

– .Rlqr input weighting matrix R ∈ Rm×m used to compute the feedback
matrix K for the tracking controller (12) with an LQR approach.
The default value is an all-zero matrix.

– .realTime flag specifying if the algorithm only switches to a new solution if
the computation time is less than the allocated time Opts.tComp

(Opts.realTime = 1), or if this real-time constraint is not consid-
ered (Opts.realTime = 0). The default value is 1.

– .tComp allocated computation time tcomp.

– .alpha contraction rate α for the contraction constraint (see [15,
Eq. (13)]). The default value is α = 0.1.

– .maxIter maximum number of optimization iterations for the optimal con-
trol problem. The default value is 10.
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– .cora struct containing the settings for reachability analysis using the
CORA toolbox (see Sec. 7.7).

Code examples for reachset model predictive control algorithm are provided in Sec. 8.2 and in
the directory /examples/reachsetMPC/... in the AROC toolbox.

2.2.2 Model Predictive Control for Linear Systems

For model predictive control of linear systems AROC implements the MPC algorithm in [16].
This approach considers a sampled-data controller

uc(x̂(t), t) = uk +K
(
x̂(tk)− xf

)
, t ∈ [tk, tk+1] (13)

which updates the control input at discrete time points t0 = 0, t1 = ∆t, t2 = 2∆t, . . . N∆t only,
where the time step size ∆t = topt/N is given by the lookahead time topt divided by the number
of time steps N . If the feedback matrix K in (13) is not provided by the user, it is determined by
applying a Linear Quadratic Regulator (LQR) approach [7, Chapter 3.3] with weighting matrices
Qlqr and Rlqr. The correction inputs uk in (13) are optimized during controller synthesis so that
the cost function J(x, u) in (11) is minimized. While for nonlinear systems we first synthesized
the control law and then used reachability analysis to verify it (see Sec. 2.2.1), for linear system
controller synthesis and verification with reachability analysis can be combined into a single
linear optimization problem that can be solved very efficiently. AROC supports the solvers
Gurobi3 and Mosek4 in addition to the Matlab build-in linear programming solvers, where the
best available solver is determined automatically. Since we can only switch to an updated control
law at discrete points in time, the allocated computation time tcomp (see Sec. 2.2 is given by the
size of one time step tcomp = topt/N .

The syntax for running the model predictive control algorithm for linear systems is as follows:

res = linSysMPC(benchmark, Param, Opts)

where benchmark, Param, and res are defined as at the beginning of Sec. 2.2, and Opts is a
struct that contains the following algorithm settings:

– .tOpt lookahead time topt (see Sec. 2.2).

– .N number of time steps N . The default value is 10.

– .termReg: terminal region T represented as an object of class mptPolytope

(see [4, Sec. 2.2.1.4]) or class terminalRegion (see Sec. 4).

– .Q state weighting matrix Q ∈ Rn×n for the cost function J(x, u) in
(11). The default value is the identity matrix.

– .R input weighting matrix R ∈ Rm×m for the cost function J(x, u) in
(11). The default value is an all-zero matrix.

– .K feedback matrix K ∈ Rm×n for the control law (13).

– .Qlqr state weighting matrix Qlqr ∈ Rn×n used to compute the feedback
matrix K for the control law (13) with an LQR approach (only if
Opts.K is not specified). The default value is the identity matrix.

– .Rlqr input weighting matrix R ∈ Rm×m used to compute the feedback
matrix K for the control law (13) with an LQR approach (only if
Opts.K is not specified). The default value is an all-zero matrix.

3https://www.gurobi.com/
4https://www.mosek.com/
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– .realTime flag specifying if the algorithm only switches to a new solution if
the computation time is less than the allocated time Opts.tComp

(Opts.realTime = 1), or if this real-time constraint is not consid-
ered (Opts.realTime = 0). The default value is 1.

– .alpha contraction rate α for the contraction constraint (see [16,
Eq. (12)]). The default value is α = 0.1.

– .cora struct containing the settings for reachability analysis using the
CORA toolbox (see Sec. 7.7).

Code examples for the model predictive control algorithm for linear systems are provided the
directory /examples/linSysMPC/... in the AROC toolbox.
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3 Maneuver Automata

In Sec. 2.1 we described how motion primitive based control algorithms can be used to construct
feasible controllers for single motion primitives offline. This section now explains how a maneuver
automaton can be generated from these offline generated motion primitives (see Sec 3.1), and
how online planning tasks can be solved with this maneuver automaton (see Sec. 3.5). An
illustration of online motion planning with a maneuver automaton is shown in Fig. 12.

Figure 12: Illustration of online motion planning for an autonomous vehicle with a maneuver
automaton. The reachable set of the vehicle center Ruc(·)(t) is shown in light gray, and the
occupancy set O(t) of the vehicle is depicted in dark gray.

3.1 Class maneuverAutomaton

Maneuver automata are in AROC represented by the class maneuverAutomaton. An object of
class maneuverAutomaton can be constructed as follows:

obj = maneuverAutomaton(primitives, shiftFun, shiftOccFun),

where obj is an object of class maneuverAutomaton, and the input arguments are defined as:

• primitives MATLAB cell-array storing the motion primitives, where each motion prim-
itive is represented as an object of class objController (see Sec. 7.3 and
Sec. 2.1).

• shiftFun MATLAB function handle to a system specific function shiftInitSet that
describes how to translate a set of system states under consideration of
invariant states (see Sec. 3.3).

• shiftOccFun MATLAB function handle to a system specific function
shiftOccupancySet that describes how to translate the occupancy
set under consideration of invariant states (see Sec. 3.3).

When an object of class maneuverAutomaton is constructed, it is automatically determined
which motion primitives can be connected to each other. The resulting connectivity matrix is
then stored in the property .conMat of the class maneuverAutomaton. Two motion primitives
can be connected to each other if the final reachable set of the first motion primitive is a subset
of the initial set of the second motion primitive. Since of course a maneuver automaton with
many connections is desirable, it is important that the motion primitive based control algorithms
described in Sec. 2.1 are able to contract the reachable set to ensure high connectivity.

26



3 MANEUVER AUTOMATA

3.2 Function postprocessing

Usually, the reachable set of the controlled system Ruc(·)(t) (see (4)) as computed by the motion
primitive based control algorithms in Sec. 2.1 only describes the position of a certain reference
point. For the autonomous vehicle benchmark in Sec. 6.6 the control algorithms for example
compute the reachable set of the center of mass. However, for online motion planning one
also has to consider the dimensions of the vehicle when testing for collisions with static and
dynamic obstacles (see Fig. 12). We call the reachable set bloated by the vehicle dimensions
the occupancy set O(t) of the system since this set describes the space that is occupied by the
vehicle. As an example we consider the occupancy set for the autonomous vehicle benchmark
in Sec. 6.6, which is

O(t) =

{[
x3 + cos(x2)δ1 − sin(x2)δ2
x4 + sin(x2)δ1 + cos(x2)δ2

] ∣∣∣∣ x ∈ Ruc(·)(t), δ1 ∈ [− l

2
,
l

2

]
, δ2 ∈

[
− w

2
,
w

2

]}
,

where l ∈ R+ is the length and w ∈ R+ the width of the vehicle. Note that the occupancy set
usually does not have the same dimension as the reachable set.

In order to construct a maneuver automaton from motion primitives one has to provide a system
specific function postprocessing which computes the occupancy set O(t) from the reachable
set Ruc(·)(t) as an additional input argument Post for controller synthesis (see Sec. 2.1). This
function is then used internally to automatically compute the occupancy set from the reachable
set. The syntax for the function postprocessing is as follows:

O(t) = postprocessing(Ruc(·)(t)),

where the occupancy set O(t) and the reachable set Ruc(·)(t) are both represented as MATLAB
cell-arrays with each entry being a struct with fields .set and .time, which store the set and the
corresponding time interval, respectively. An example for the system specific implementation
of the postprocessing function for the autonomous car benchmark in Sec. 6.6 can be found in
the file /benchmarks/automaton/postprocessing car.m in the AROC toolbox.

3.3 Function shiftInitSet

Many systems have invariant states. The autonomous car benchmark in Sec. 6.6 for example is
translation invariant as well as rotation invariant, so that the only state that is not invariant is
the velocity of the car. Invariant states are very advantageous for the construction of maneuver
automata since they allow to shift motion primitives to different positions (see Fig. 12), which
significantly reduces the number of motion primitives that are required to solve motion planning
problems.

In AROC, the invariance of the system is defined by a system specific function shiftInitSet

which returns the set Rshift resulting from the translation of a set of initial states R0 ⊂ Rn to
the final state xf ∈ Rn while considering the invariant states:

Rshift = shiftInitSet(R0, xf ).

A MATLAB function handle to the system specific implementation of the function shiftInitSet

has to be provided for the construction of a maneuver automaton (see Sec. 3.1).

As an example we consider the implementation of the function shiftInitSet for the autonomous
vehicle benchmark in Sec. 6.6:

Rshift =


0
xf,2
xf,3
xf,4

+


1 0 0 0
0 1 0 0
0 0 cos(xf,2) − sin(xf,2)
0 0 sin(xf,2) cos(xf,2)




1 0 0 0
0 1 0 0
0 0 cos(c2) − sin(c2)
0 0 sin(c2) cos(c2)


−1R0 −


0
c2
c3
c4


 ,
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where c = center(R0) is the center of the initial set. The velocity, which is state x1 is not
changed since it is not an invariant state. However, the orientation x2 and the positions x3 and
x4 are updated to the orientation and positions of the final states due to the translation and
rotation invariance of the system. Furthermore, the positions x3 and x4 are rotated due to the
change in orientation. The function shiftInitSet for the autonomous vehicle benchmark is
implemented in the file /benchmarks/automaton/shiftInitSet car.m in the AROC toolbox.

3.4 Function shiftOccupancySet

As described in Sec. 3.3 invariant states of the system allow us to shift motion primitives to
different positions. When doing so, we of course also have to update the occupancy set O(t) (see
Sec. 3.2) for these motion primitives. In AROC, the rules for updating the occupancy set can be
specified with a system specific function shiftOccupancySet which returns the new occupancy
set after shifting the motion primitive to the new initial state x0 ∈ Rn at time t ∈ R+:

Oshift(t) = shiftOccupancySet(O(t), x0, t),

where O(t) is the original occupancy set of the motion primitive. A MATLAB function handle
to the system specific implementation of the function shiftOccupancySet has to be provided
for the construction of a maneuver automaton (see Sec. 3.1).

As an example we consider the implementation of the function shiftOccupancySet for the
autonomous vehicle benchmark in Sec. 6.6:

Oshift(t) =

[
x0,3
x0,4

]
+

[
cos(x0,2) − sin(x0,2)
sin(x0,2) cos(x0,2)

]
O(t),

where we assume without loss of generality that the initial orientation and positions of the
motion primitive are equal to 0. The function shiftOccupancySet for the autonomous vehicle
benchmark is implemented in the file /benchmarks/automaton/shiftOccupancySet car.m in the
AROC toolbox.

3.5 Motion Planner

Given an offline constructed maneuver automaton, motion planning is reduced to the task of
solving a classical search problem (see Fig. 12), which can be implemented very efficiently and
is therefore well suited for online control. In AROC, online motion planning with a maneuver
automaton is implemented in the function motionPlanner:

ind = motionPlanner(obj, x0, goalSet, statObs, dynObs, search)

ind = motionPlanner(obj, x0, goalSet, statObs, dynObs, search, costFun)

ind = motionPlanner(obj, x0, goalSet, statObs, dynObs, search, costFun, goalFun),

where ind is a vector that stores the indices of the motion primitives that correspond to the
planned trajectory, and the input arguments are defined as

• obj object of class maneuverAutomaton that represents the maneuver automa-
ton that is used for online planning.

• x0 Inital state x0 ∈ Rn for the motion planning problem.

• goalSet target set which should be reached by the system specified as a struct with
fields .set and .time which specify the target set and the corresponding
time interval, respectively.

• statObs MATLAB cell-array storing the static obstacles for the motion planning
problem.
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• dynObs MATLAB cell-array storing the dynamic obstacles for the motion planning
problem, where each entry of the cell-array is a struct with fields .set

and .time which store the set and the corresponding time interval of the
dynamic obstacles.

• search string specifying the search algorithm that is used to solve the mo-
tion planning problem. The available algorithms are depth-first search
(’depth-first’), breadth-first search (’breadth-first’), and A∗ search
(’Astar’).

• costFun function handle to a custom cost function for A∗ search.

• goalFun function handle to a custom function for checking if the goal set for motion
planning has been reached.

The sets for goal set, static obstacles, and dynamic obstacles can be represented by any of the
set representations from the CORA toolbox [4, Sec. 2.2.1]. For the car and ship benchmarks
in Sec. 6.6 and Sec. 6.9, the parameter x0, goalSet, statObs, and dynObs which define the
motion planning problem can be conveniently loaded from CommonRoad or CommonOcean files
(see Sec. 1.7). The trajectory planned by the motion planner can be visualized and simulated
using the functions plotPlannedTrajectory, simulate, and simulateRandom located in the
directory /classes/maneuverAutomaton/.... Code examples that demonstrate the construction
of a maneuver automaton as well as online planning using the function motionPlanner are
provided in Sec. 8.3 and in the directory /examples/maneuverAutomaton/... in the AROC
toolbox.
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4 Terminal Region

For the model predictive control algorithms described in Sec. 2.2 one requires a terminal region
T . In this section we present algorithms to compute terminal regions. These algorithm first
synthesize a terminal controller uc(x(t), t), and then compute a terminal region for the controlled
system. The terminal region is defined as a set T ⊂ Rn for which the terminal controller steers all
points inside the set in finite time back into the set, while satisfying input and state constraints
and considering disturbances acting on the system:

T =
{
x
∣∣∣ ∃tf ∈ R+ : ∀w(·) ∈ W, ∀v(·) ∈ V : ξ(tf , x, uc(·), w(·), v(·)) ∈ T ,

∀t ∈ [0, tf ], ∀x̂(t) ∈ Ruc(·)(t)⊕ V : uc(x̂(t), t) ∈ U ,

∀t ∈ [0, tf ], ∀w(·) ∈ W, ∀v(·) ∈ V : ξ
(
t, x, uc(·), w(·), v(·)

)
∈ X

} (14)

In AROC, terminal regions can be computed with the function computeTerminalRegion, which
is defined as follows:

T = computeTerminalRegion(bemchmark, alg, Param, Opts),

where the output argument is the terminal region T represented as an object of class terminalRegion
(see Sec. 7.4), and the input arguments are defined as follows:

• benchmark name of the benchmark system that is considered (see Sec. 6).

• alg string specifying the algorithm that is used to compute the terminal region.
The available algorithms are ’subpaving’ (see Sec. 4.1) and ’zonoLinSys’

(see Sec. 4.2).

• Param struct containing the system parameter

– .U set of input constraints U (see (1)) represented as an object
of class interval (see [4, Sec. 2.2.1.2]).

– .W set of disturbances W (see (1)) represented as an object of
class interval or zonotope (see [4, Sec. 2.2.1]).

– .V set of measurement errors V (see (2)) represented as an ob-
ject of class interval or zonotope (see [4, Sec. 2.2.1]).

– .X set of state constraints X (see (1)) represented as an object
of class mptPolytope (see [4, Sec. 2.2.1.4]).

• Opts struct containing algorithm settings. Since the settings are different for each
algorithm they are documented in Sec. 4.1.

Next, we describe the different algorithms AROC provides for computing terminal regions in
detail.

4.1 Subpaving Algorithm

The approach considered first is the one in [17]. This approach represents the terminal region as
a subpaving, which is defined as the union of non-overlapping boxes [18, Chapter 3]. A schematic
visualization of the subpaving algorithm is shown in Fig. 13.

For the computation of the terminal region an equilibrium point xeq ∈ Rn, ueq ∈ Rm of the
system satisfying ẋ = f(xeq, ueq,0) = 0 is considered. If the feedback matrix K ∈ Rm×n for the
terminal controller

uc(x̂(t), t) = ueq +K
(
x̂(t)− xeq

)
(15)

30



4 TERMINAL REGION

Figure 13: Illustration of the subpaving algorithm for the computation of a terminal region.

is not provided it is computed by applying a Linear Quadratic Regualtor (LQR) approach [7,
Chapter 3.3] to the system linearized at the equilibrium point. Furthermore, the approach
requires a set Tinit ⊂ Rn with xeq ∈ Tinit, which is guaranteed to be part of the terminal
region. Starting from a search domain Tdom, the algorithm then recursively divides Tdom into
smaller boxes, and checks for each box if the reachable set of the controlled system starting
from the box reaches the terminal set Tinit while satisfying input and state constraints. If this
is the case, the box is added to the subpaving representing the terminal region. Otherwise,
the box is divided into smaller boxes and the procedure is repeated until a certain recursion
limit is reached. Subpavings have the disadvantage that containment checks as required for
model predictive control are computationally demanding. Our implementation of the algorithm
therefore automatically computes a polytope P ⊆ T which is an inner-approximation of the
subpaving, and therefore guaranteed to be contained in the terminal region. For polytopes, set
containment checks are very fast.

The settings for the subpaving algorithm, which are specified as fields of the struct Opts (see
Sec. 4), are as follows:

– .Tdomain search domain Tdom ⊂ Rn represented as an object of class interval

(see [4, Sec. 2.2.1.2]).

– .Tinit initial guess Tinit ⊂ T for the terminal region represented as an object
of class interval (see [4, Sec. 2.2.1.2]).

– .xEq equilibrium point xeq ∈ Rn.

– .uEq control input for the equilibrium point ueq ∈ Rm.

– .numRef recursion limit Opts.numRef > 1 for the number of refinement of the
box sizes. The default value is 4.

– .enlargeFac enlargement factor Opts.enlargeFac > 1 applied to enlarge the initial
guess Tinit in order to accelerate the computation. The default value is
1.5.

– .tMax final time for reachability analysis.

– .reachSteps number of reachability steps. The default value is 100.

– .K feedback matrix K ∈ Rm×n for the terminal controller.

– .Q state weighting matrix Q ∈ Rn×n used to compute the feedback matrix
K for the terminal controller with an LQR approach (only if Opts.K is
not specified). The default value is the identity matrix.
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– .R input weighting matrix R ∈ Rm×m used to compute the feedback matrix
K for the terminal controller with an LQR approach (only if Opts.K is
not specified). The default value is the identity matrix..

– .cora struct containing the settings for reachability analysis using the CORA
toolbox (see Sec. 7.7).

Code examples for terminal region construction using the subpaving algorithm are provided in
the directory /example/terminalRegion/examples/... in the AROC toolbox.

4.2 Zonotope Approach for Linear Systems

Another approach for computing terminal regions is the one from [19], which specializes on linear
systems and represents the terminal region as a zonotope. As for the subpaving algorithm the
terminal region around an equilibrium point xeq ∈ Rn, ueq ∈ Rm satisfying ẋ = f(xeq, ueq,0) = 0
is computed. The high-level concept of the algorithm consists of two phases:

1. First, a terminal set Tfin is constructed by computing the reachable set of the controlled
system starting from a search domain Tdom and from the equilibrium point xeq in parallel
until both reachable sets converge to a common set with tolerance ε > 0.

2. The aim of the second step is to determine a larger terminal set T by solving a convex
optimization problem with the goal of steering all states in N time steps into the previously
determined terminal set Tfin.

A schematic visualization of this approach is shown in Fig. 14.

Figure 14: Illustration of terminal region computation using the zonotope approach for linear
systems, where the reachable sets for phase one starting from the search domain Tdom and from
the equilibrium point xeq are depicted in blue and black, respectively.

The approach considers a sampled-data controller that updates the control input at discrete
time points t0 = 0, t1 = ∆t, t2 = 2∆t, . . . only. For the first phase the control law

uc(x̂(t), t) = ueq +K (x̂(tk)− xeq), t ∈ [tk, tk+1]

is used for the terminal controller, while for the second phase the control law

uc(x̂(t), t) = ueq +K (x̂(tk)− xeq) + cu,k +Gu,k αinit, t ∈ [tk, tk+1] (16)

is applied. The value αinit in (16) representing the zonotope factors that correspond to the
initial state x(0) is determined from the equation

x(0) = cinit +Ginit αinit,
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where cinit and Ginit are the center and generator matrix of the zonotope that represents the
terminal region T . The values cu,k and Gu,k that define a correction control input are optimized
together with proper scaling factors for the generators of the zonotope T by the optimization
problem that is solved in the second phase. If the feedback matrix K ∈ Rm×n is not specified
a suitable feedback matrix is determined by applying a Linear Quadratic Regualtor (LQR)
approach [7, Chapter 3.3]. For the convex optimization problem in phase two the AROC supports
the solvers Gurobi5 and Mosek6 in addition to the Matlab build-in solvers, where the best
available sover is determined automatically.

The settings for the zonotope approach for linear systems, which are specified as fields of the
struct Opts (see Sec. 4), are as follows:

– .Tdomain search domain Tdom ⊂ Rn represented as an object of class interval

(see [4, Sec. 2.2.1.2]).

– .xEq equilibrium point xeq ∈ Rn. The default value is 0.

– .uEq control input for the equilibrium point ueq ∈ Rm. The default value is
0.

– .timeStep time step size ∆t for the sampled-data controller.

– .N number of time steps. The default value is 10.

– .K feedback matrix K ∈ Rm×n for the terminal controller.

– .Q state weighting matrix Q ∈ Rn×n used to compute the feedback matrix
K for the terminal controller with a LQR approach (only if Opts.K is
not specified). The default value is the identity matrix.

– .R input weighting matrix R ∈ Rm×m used to compute the feedback matrix
K for the terminal controller with a LQR approach (only if Opts.K is
not specified). The default value is the identity matrix.

– .maxDist Convergence tolerance ε for the computation of Tfin during the first
phase of the algorithm. The default value is 0.01.

– .genMethod String specifying the method that is used to select the generator matrix
Ginit for the terminal set T . The available methods are ’termSet’ (same
generator matrix as Tfin), ’sampling2D’ (uniformly sampled directions,
for n = 2 only), and ’provided’ (matrix provided by user in Opts.G).
The default value is ’termSet’.

– .G Generator matrix Ginit for the terminal set T (only if
Opts.genMethod=’provided’).

– .costFun String specifying the cost function used for the optimization problem in
the second phase. The available cost functions are ’sum’ (sum of scal-
ing factors), ’geomean’ (geometric mean of scaling factors) and ’none’

(terminate algorithm after phase one). The default value is ’sum’.

– .cora struct containing the settings for reachability analysis using the CORA
toolbox (see Sec. 7.7).

Code examples for terminal region construction using the zonotope approach for linear sys-
tems are provided in Sec. 8.4 and in the directory /examples/terminalRegion/... in the AROC
toolbox.

5https://www.gurobi.com/
6https://www.mosek.com/
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5 Conformant Synthesis

No matter how accurate a model is, it will never fully capture all behaviors of the real system. To
formally verify the real system one therefore has to use an over-approximative model. In AROC
we obtain over-approximative models by considering uncertain inputs w ∈ W and measurement
errors v ∈ V (see (1)). Conformant synthesis is a method to determine the set of uncertain
inputs W ⊂ Rq and the set of measurement errors V ⊂ Rn from measurements of the real
system, where we chose the smallest set W and V such that all measurements are covered by
the over-approximative model.

Figure 15: Illustration of conformant synthesis.

In detail, conformant synthesis is defined as follows: Given a measurement (X̂, U, T ) consisting
of the measured trajectory X̂ = [x̂(t0), . . . , x̂(tK)] ∈ Rn×K , the corresponding piecewise con-
stant input signal U = [u(t0), . . . , u(tK−1)] ∈ Rm×(K−1), and the vector of measurement times
T = [t0, . . . , tK ] ∈ RK , the conformance checking algorithm determines a sequence of piecewise
constant uncertain inputs w(t0), . . . , w(tK−1) and measurement errors v(t0), . . . , v(tK) matching
the measured trajectory X̂ by solving the following optimization problem:

min
w(t0),...,w(tK−1)
v(t0),...,v(tK)

µ

(K−1∑
i=1

w(ti)
Tw(ti)

)
+ (1− µ)

( K∑
i=1

v(ti)
T v(ti)

)

s.t. x(ti+1) = x(ti) +

∫ ti+1−ti

0
f
(
x(ti), u(ti), w(ti)

)
dt, ∀i = 0, . . .K − 1,

x̂(ti) = x(ti) + v(ti), ∀i = 0, . . .K,

(17)

where the user-defined parameter µ ∈ [0, 1] defines how much uncertainty is captured by the
set of uncertain inputs W and now much by the set of measurement errors V. To obtain
reliable values for the model uncertainty one has to consider many different measurements
from the real system which correspond to all possible system behaviors. We therefore solve
a separate optimization problem (17) for each measured trajectory of the system. The resulting
uncertain inputs and measurement errors are then tightly enclosed by sets W and V such that
∀i = 1, . . . ,K − 1 : w(ti) ∈ W and ∀i = 1, . . . ,K : v(ti) ∈ V. A visualization of conformance
checking is shown in Fig. 15.

The syntax for the conformance checking algorithm implemented in AROC is as follows:

[W,V] = conformantSynthesis(benchmark, measurements)

[W,V] = conformantSynthesis(benchmark, measurements, Opts),

where the input arguments are defined as follows:
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• benchmark name of the benchmark system that is considered (see Sec. 6).

• measurements cell-array storing the measurements of the system as a list, where each
entry corresponds to one measured trajectory, which is represented as a
struct with the following fields:

– .x matrix X̂ = [x̂(t0), . . . , x̂(tK)] ∈ Rn×K storing the measured
system states.

– .u matrix U = [u(t0), . . . , u(tK−1)] ∈ Rm×(K−1) storing the
piecewise constant control inputs corresponding to the mea-
sured trajectory.

– .t vector T = [t0, . . . , tK ] ∈ RK storing the discrete time points
at which the system state is measured.

• Opts struct containing algorithm settings:

– .set string specifying the set representation that is used to
represent the sets W and V. The available set repre-
sentations are ’interval’ (see [4, Sec. 2.2.1.2]) and
’zonotope’ (see [4, Sec. 2.2.1.1]). The default value
is ’interval’

– .group Number of measurement points that are grouped to-
gether into a single optimization problem. The default
value is 10.

– .measErr flag specifying if a set of measurement errors V is
used in addition to the set of uncertain inputs W to
capture the uncertainty (Opts.measErr = true) or
not (Opts.measErr = false). The default value is
false.

– .mu parameter µ ∈ [0, 1] in (17) that defines how much
uncertainty is captured by the set of uncertain inputs
W and how much by the set of measurement errors V.
The default value is 0.5.

Code examples demonstrating conformant synthesis are provided in Sec. 8.5 and in the directory
/example/conformance/... in the AROC toolbox.
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6 Benchmarks

In this section we provide a short description for all benchmark systems contained in the AROC
toolbox. New custom benchmarks can be easily added as described in Sec. 7.1. The code for all
benchmarks is contained in the directory /benchmarks/.. in the AROC toolbox.

6.1 Double Integrator

The first benchmark system is a simple double integrator that describes a point-mass sliding
frictionless on a plane [19, Sec. V.A] (see Fig. 16).

Figure 16: Visualization of the double integrator benchmark system.

The system dynamics for the double integrator is as follows [19, Sec. V.A]:

ẋ1 = x2 + w1

ẋ2 =
1

m
u+ w2,

where the system states are the position x1 = x and the velocity x2 = ẋ of the point-mass,
the system input is the force u = F , and the weight of the point-mass is m = 1kg. The
input constraint is u ∈ [−1, 1]N and the set of disturbances is w1 ∈ [−0.1, 0.1]m/s and w2 ∈
[−0.1, 0.1]m/s2. Furthermore, we consider the initial set x1(0) ∈ [−0.2, 0.2]m and x2(0) ∈
[−0.2, 0.2]m/s.

The differential equation describing the double integrator is implemented in the file /bench-
marks/dynamics/doubleIntegrator.m, and the parameters for the system are specified in the file
/benchmarks/parameter/param doubleIntegrator.m. The name of the benchmark is benchmark

= ’doubleIntegrator’.

6.2 Cart

The second benchmark describes a cart that is coupled to the environment with a damping
element and a spring with nonlinear stiffness [20, Eq. (3)] (see Fig. 17).

Figure 17: Visualization of the cart benchmark system.

The system dynamics for the cart benchmark is as follows [20, Eq. (3)]:

ẋ1 = x2 + w1

ẋ2 =
1

m
(−d · x22 − k · x31 + u) + w2,
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where the system states are the position x1 = x and the velocity x2 = ẋ of the cart, the system
input is the force u = F , the weight of the cart is m = 1kg, the damping constant is d = 1kg/m,
and the spring stiffness constant is k = 1N/m2. The input constraint is u ∈ [−14, 14]N and the
set of disturbances is w1 ∈ [−0.1, 0.1]m/s and w2 ∈ [−0.1, 0.1]m/s2. Furthermore, we consider
the initial set x1(0) ∈ [−0.2, 0.2]m and x2(0) ∈ [−0.2, 0.2]m/s.

The differential equation describing the cart benchmark is implemented in the file /benchmark-
s/dynamics/cart.m, and the parameters for the system are specified in the file /benchmarks/pa-
rameter/param cart.m. The name of the benchmark is benchmark = ’cart’.

6.3 Cartpole

A classical benchmark for nonlinear control is a cartpole, where the task is to balance the pole
in its upward instable equilibrium point (see Fig. 18).

Figure 18: Visualization of the cartpole benchmark system.

The system dynamics for the cartpole benchmark is as follows [21, Eq. (1)(2)]:

ẋ1 = x3

ẋ2 = x4

ẋ3 =
mp l x

2
4 sin(x2) cos(x2)

2− (mc+mp)g cos(x2) sin(x2)+cos(x2)
2u

4
3(mc +mp)2l −mp(mc +mp)l cos(x2)2

+
u+mp l x

2
4 sin(x2)

mc +mp
+w1

ẋ4 =
(mc +mp)g sin(x2)−mp l x

2
4 sin(x2) cos(x2)− cos(x2)u

4
3(mc +mp)l −mp l cos(x2)2

+ w2

where the system states are the position x1 = x and velocity x3 = ẋ of the cart as well as the
angle x2 = φ and angular velocity x4 = φ̇ of the pendulum, the system input is the force u = F ,
the weight of the cart is mc = 1kg, the weight of the pole is mp = 0.1kg, the length of the pole =
l = 1m, and g = 9.81m/s2 is the gravitational constant. The input constraint is u ∈ [−10, 10]N
and the set of disturbances is w1 ∈ [−0.5, 0.5]m/s2 and w2 ∈ [−0.02, 0.02]rad/s2. Moreover, we
consider the initial set x1(0) ∈ [−0.2, 0.2]m, x2(0) ∈ [−0.02, 0.02]rad, x3(0) ∈ [−0.2, 0.2]m/s,
and x4(0) ∈ [−0.02, 0.02]rad/s.

The differential equation describing the cartpole benchmark is implemented in the file /bench-
marks/dynamics/cartpole.m, and the parameters for the system are specified in the file /bench-
marks/parameter/param cartpole.m. The name of the benchmark is benchmark = ’cartpole’.

6.4 Stirred Tank Reactor

The next benchmark is taken from [22, Sec. 5] and considers an exothermic, irreversible reaction
A→ B of the reactant A to the product B inside a stirred tank reactor (see Fig. 19).
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Motor

Figure 19: Visualization of the stirred tank reactor benchmark system.

The system dynamics for the stirred tank reactor is as follows [22, Eq. (15)]:

ẋ1 =
q

V

(
CAf − (x1 + CeqA )

)
− k0 · e−E/(R(x2+T eq)) · (x1 + CeqA ) + w1

ẋ2 =
q

V

(
Tf − (x2 + T eq)

)
− ∆H

ρ · Cp
k0 · e−E/(R(x2+T eq)) · (x1 + CeqA )

+
UA

V · ρ · Cp
(
u+ T eqc − (x2 + T eq)

)
+ w2,

where the system states are the difference of the concentration of reactant A from the equilibrium
point x1 = CA − CeqA and the difference of the reactor temperature from the equilibrium point
x2 = T −T eq, and the system input is the difference of the cooling stream temperature from the
equilibrium point u = Tc − T eqc . The parameter are defined as CeqA = 0.5 mol/l, T eq = 350 K,
T eqc = 300 K, q = 5/3 l/s, Tf = 350 K, V = 100 l, ρ = 1000 g/l, Cp = 0.239 J/g K,
∆H = −5 · 104 J/mol, E/R = 8750 K, k0 = 7.2/60 · 1010 s−1, UA = 1/12 · 104 J/s K. The
input constraint is u ∈ [−20, 70]K and the set of disturbances is w1 ∈ [−0.1, 0.1]mol/l s−1

and w2 ∈ [−2, 2]K/s. Furthermore, we consider the initial set x1(0) ∈ [−0.17,−0.13]mol/l and
x2(0) ∈ [−48,−43]K.

The differential equation describing the stirred tank reactor is implemented in the file /bench-
marks/dynamics/stirredTankReactor.m, and the parameters for the system are specified in
the file /benchmarks/parameter/param stirredTankReactor.m. The name of the benchmark is
benchmark = ’stirredTankReactor’.

6.5 Artificial System

Now, we consider the artificial nonlinear system in [23, Sec. 5]. The system dynamics for the
artificial system is as follows [23, Eq. (19)]:

ẋ1 = −x1 + 2x2 + 0.5u

ẋ2 = −3x1 + 4x2 − 0.25x32 − 2u+ w.

The input constraint is u ∈ [−2, 2]1/min, and the set of disturbances is w ∈ [−0.1, 0.1]1/min.
Furthermore, we consider the initial set x1(0) ∈ [0.5, 0.7] and x2(0) ∈ [−0.65,−0.55].

The differential equation describing the artificial system is implemented in the file /bench-
marks/dynamics/artificialSystem.m, and the parameters for the system are specified in the file
/benchmarks/parameter/param artificialSystem.m. The name of the benchmark is benchmark

= ’artificialSystem’.
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6.6 Car

One of the most often used benchmarks in AROC is the kinematic single-track model of an
autonomous car taken from [8, Sec. 6] (see Fig. 20).

Figure 20: Visualization of the autonomous car benchmark system.

The system dynamics for the autonomous car benchmark is as follows [8, Eq. (19)]:

ẋ1 = u1 + w1

ẋ2 = u2 + w2

ẋ3 = x1 · cos(x2)

ẋ4 = x1 · sin(x2),

where the system states are the velocity x1 = v, the orientation x2 = φ, and the position
x3 = x, x4 = y of the car. The system inputs are the acceleration u1 and the normalized
steering angle u2. The input constraints are u1 ∈ [−9.81, 9.81]m/s2 and u2 ∈ [−0.4, 0.4]rad/s,
and the set of disturbances is w1 ∈ [−0.5, 0.5]m/s2 and w2 ∈ [−0.02, 0.02]rad/s. Furthermore,
we consider the initial set x1(0) ∈ [19.8, 20.2]m/s, x2(0) ∈ [−0.02, 0.02]rad, x3(0) ∈ [−0.2, 0.2]m
and x4(0) ∈ [−0.2, 0.2]m.

The differential equation describing the autonomous car benchmark is implemented in the file
/benchmarks/dynamics/car.m, and the parameters for the system are specified in the file /bench-
marks/parameter/param car.m. The name of the benchmark is benchmark = ’car’.

6.7 Truck

Also the semi-trailer truck benchmark taken from [24, Sec. 6] considers autonomous road traffic
(see Fig. 21).

Figure 21: Visualization of the autonomous truck benchmark system.
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The system dynamics for the autonomous truck benchmark is as follows [24, Eq. (9)]:

ẋ1 = u1 + w1

ẋ2 =
1

lwb
· x4 · tan(x1)

ẋ3 = −x4 ·
( 1

lwbt
sin(x3) +

1

lwb
tan(x1)

)
ẋ4 = u2 + w2

ẋ5 = x4 · cos(x2)

ẋ6 = x4 · sin(x2),

where the system states are the steering angle x1 = δ, the orientation of the truck x2 = φ,
the orientation of the trailer x3 = α, the velocity x4 = v, and the position x3 = x, x4 = y of
the trucks rear axis. The system inputs are the steering velocity u1 and the acceleration u2,
and lwb = 3.6m is the length of the wheelbase of the truck and lwbt = 8.1m is the length of the
wheelbase of the trailer. The input constraints are u1 ∈ [−1, 1]rad/s and u2 ∈ [−9.81, 9.81]m/s2,
the set of disturbances is w1 ∈ [−0.02, 0.02]rad/s and w2 ∈ [−0.5, 0.5]m/s2, and the state
constraints are 0.9rad ≤ x1 ≤ 0.9rad and −π/2 ≤ x3 ≤ π/2. Furthermore, we consider the
initial set x1(0), x2(0), x3(0) ∈ [−0.02, 0.02]rad, x4(0) ∈ [14.8, 15.2]m/s, x5(0) ∈ [−0.2, 0.2]m
and x6(0) ∈ [−0.2, 0.2]m.

The differential equation describing the autonomous truck benchmark is implemented in the
file /benchmarks/dynamics/truck.m, and the parameters for the system are specified in the file
/benchmarks/parameter/param truck.m. The name of the benchmark is benchmark = ’truck’.

6.8 Quadrotor 2D

Another benchmark taken from [25, Sec. IV.B] describes a quadrotor that flies in a 2-dimensional
plane (see Fig. 22).

Figure 22: Visualization of the 2D quadrotor benchmark system.

The system dynamics for the 2D quadrotor benchmark is as follows [25, Eq. (3)]:

ẋ1 = x4

ẋ2 = x5

ẋ3 = x6

ẋ4 =
1

m
sin(x3)(u1 + u2) + w1

ẋ5 =
1

m
cos(x3)(u1 + u2)− g + w2

ẋ6 =
l√

2 Iyy
(u2 − u1) + w3,
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where the system states are the positions x1 = x and x2 = z, the orientation x3 = φ, the velocities
x4 = ẋ and x5 = ż in the spatial dimension, and the angular velocity x6 = φ̇ of the quadrotor.
The system inputs are the thrusts u1 = T1 and u2 = T2 generated by the two rotors. Moreover,
the weight of the quadrotor is m = 0.027kg, the moment of inertia is Iyy = 1.4 · 10−5kgm2, the
arm length of the quadrotor is l = 0.0397m, and the acceleration due to gravity is g = 9.81m/s2.
The input constraints are u1 ∈ [0, 0.2646]N and u2 = [0, 0.2646]N , and the set of disturbances
is w1 ∈ [−0.1, 0.1]m/s2, w2 ∈ [−0.1, 0.1]m/s2, and w3 ∈ [−0.1, 0.1]rad/s2. Furthermore, we
consider the initial set x1(0) ∈ [−0.1, 0.1]m, x2(0) ∈ [−0.1, 0.1]m, x3(0) ∈ [−0.05, 0.05]rad,
x4(0) ∈ [−0.1, 0.1]m/s, x5(0) ∈ [−0.1, 0.1]m/s, and x6(0) ∈ [−0.05, 0.05]rad/s.

The differential equation describing the 2D quadrotor benchmark is implemented in the file
/benchmarks/dynamics/quadrotor2D.m, and the parameters for the system are specified in the
file /benchmarks/parameter/param quadrotor2D.m. The name of the benchmark is benchmark

= ’quadrotor2D’.

6.9 Ship

The ship benchmark in AROC represents the model of a container vessel taken from [26, Sec. 6]
(see Fig. 23).

Figure 23: Visualization of the container ship benchmark system.

The system dynamics for the container ship is as follows [26, Eq. (15)]:

x1
x2
x3
x4
x5
x6

 =


R(x)

x4x5
x6


M−1

(
− C(x)

x4x5
x6

−D
x4x5
x6

+

u1u2
u3

+

w1

w2

w3

)


where the matrices R(x), M−1, C(x), and D are given as

R(x) =

cos(x3) sin(x3) 0
sin(x3) cos(x3) 0

0 0 1

 , M−1 =


1

m−Xu̇
0 0

0 Iz−Nṙ
Cm

Yṙ−mxg
Cm

0
Yṙ−mxg
Cm

m−Yv̇
Cm

 , D =

−Xu 0 0
0 −Yv −Yr
0 −Nv −Nr

 ,
C(x) =

 0 0 −m(xgx6 + x5) + Yv̇x5 + Yṙx6
0 0 mx6 −Xu̇x4

m(xgx6 + x5)− Yv̇x5 − Yṙx6 −mx6 +Xu̇x4 0


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and Cm = Izm − Nṙm − Yv̇Iz + NṙYv̇ −m2x2g − 2mxgYṙ − Y 2
ṙ . According to [26, Tab. 2], the

total vessel mass is m = 24.56 · 106kg, the distance to the center of gravity is xg = −2.55m, the
inertia is Iz = 54.99 ·109kgm2, the surge aligned force coefficient is Xu = −150.64 ·103, the sway
lateral force coefficient is Yv = −218.6, the yaw lateral force coefficient is Yr = 9.277 · 103, the
sway moment coefficient is Nv = −14.23 · 103, the yaw moment coefficient is Nr = −1.113 · 106,
the surge-rate aligned force coefficient is X·u = −1.8 · 106, the sway-rate lateral force coef-
ficient is Yv̇ = −26.54 · 106, the yaw-rate lateral force coefficient is Yṙ = −283.4 · 106, and
the yaw-rate moment coefficient is Nṙ = −44.85 · 109. The system states are the position
x1 = x, x2 = y and orientation x3 = φ of the vessel, the velocities x4 = vx and x5 = vy in
a vessel-fixed coordinate frame, and the angular velocity x5 = φ̇. The control inputs are the
forces u1 = Fx, u2 = Fy expressed in the vessel-fixed coordinate frame as well as the torque
u3 = M . According to [26, Tab. 1], the input constraints are u1 ∈ [−5894896.77, 5894896.77]N ,
u2 ∈ [−5894896.77, 5894896.77]N , and u3 ∈ [−1350409.48, 1350409.48]Nm. Moreover, the dis-
turbance is w1 ∈ [−1000, 1000]N , w2 ∈ [−1000, 1000]N , and w3 ∈ [−1000, 1000]Nm, and we
consider the initial set x1(0) ∈ [−1, 1]m, x2(0) ∈ [−1, 1]m, x3(0) ∈ [−0.01, 0.01]rad, x4(0) ∈
[4.8, 5.2]m/s, x5(0) ∈ [−0.2, 0.2]m/s, and x6(0) ∈ [−0.001, 0.001]rad/s.

The differential equation describing the ship benchmark is implemented in the file /benchmark-
s/dynamics/ship.m, and the parameters for the system are specified in the file /benchmarks/pa-
rameter/param ship.m. The name of the benchmark is benchmark = ’ship’.

6.10 Robot Arm

This benchmark describes a planar robot arm with two rotational joints (see Fig. 24).

Figure 24: Visualization of the robot arm benchmark system.

The system dynamics for the robot arm benchmark is as follows:

ẋ1 = x3 + w1

ẋ2 = x4 + w2

ẋ3 = (βδs2 + 2β2s2c2)x
2
3 + 2βδs2x3x4 + δβs2x

2
4 + δu1 − (δ + 2βc2)u2 + w3

ẋ4 = −(αβs2 + 2β2s2c2)x
2
3 − (2βδs2 + 4β2s2c2)x3x4 − (δβs2 + 2β2s2c2)x

2
4

− (δ + 2βc2)u1 + (α+ 2βc2)u2 + w4,

where the system states are the angles x1 = θ1 and x2 = θ2 and the angular velocities x3 = θ̇1
and x4 = θ̇2 of the first and the second joint. The system inputs are the joint torques u1 = τ1
and u2 = τ2. Furthermore, we use the shorthands c1 = cos(θ1), s1 = sin(θ2), c2 = cos(θ2),
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s2 = sin(θ2), α = m1r
2
1 + m2l

2
1 + m2r

2
2 + Iz,1 + Iz,2, β = m2l1r2, and δ = m2r

2
2 + Iz,2. The

parameter values are m1 = 1kg, m2 = 1kg, r1 = 0.1m, r2 = 0.1m, l1 = 0.2m, l2 = 0.2m,
Iz,1 = 1 kg m2, and Iz,1 = 1 kg m2, where Iz,1, Iz,2 is the inertia of the two links. The
input constraints are u1 ∈ [−3, 3]Nm and u2 ∈ [−1, 1]Nm, the set of disturbances is w1, w2 ∈
[−0.01, 0.01]rad/s and w3, w4 ∈ [−0.01, 0.01]rad/s2, and the state constraints are 0 ≤ x1 ≤ π
and −π ≤ x2 ≤ π. Furthermore, we consider the initial set x1(0), x2(0) ∈ [−0.05, 0.05]rad and
x3(0), x4(0) ∈ [−0.05, 0.05]rad/s.

The differential equation describing the robot arm is implemented in the file /benchmarks/dy-
namics/robotArm.m, and the parameters for the system are specified in the file /benchmarks/-
parameter/param robotArm.m. The name of the benchmark is benchmark = ’robotArm’.

6.11 Mobile Robot

Next, we consider the model of a Pioneer 3DX mobile robot (see Fig. 25), which is taken
from [27].

Figure 25: Visualization of the Pioneer 3DX mobile robot.

The system dynamics for the mobile robot benchmark is as follows [27, Sec. 2.1]:

ẋ1 =
r

2
(x4 + x5) cos(x3)

ẋ2 =
r

2
(x4 + x5) sin(x3)

ẋ3 =
r

b
(x4 − x5)

ẋ4 =
1

A2 −B2
(Au1 −AKx4 −Bu2 +BKx5) + w1

ẋ5 =
1

A2 −B2
(−Bu1 +BKx4 +Au2 −AKx5) + w2,

where

A =
mr2

4
+

(I +md2)r2

b2
+ I0, B =

mr2

4
− (I +md2)r2

b2
.

The system states are the position x1 = x, x2 = y and the orientation x3 = φ of the mobile robot,
as well as the angular velocities x4 = θ̇R, x5 = θ̇L of the right and the left actuated wheel. The
system inputs are the torques u1 = τR and u2 = τL acting on the two actuated wheels. According
to [27, Tab. 1] and [27, Tab. 2], the mass of the mobile robot is m = 28.05kg, the radius of the
wheels is r = 0.095m, and the additional parameter are defined as b = 0.32m, d = 0.0578m,
I = 17.5kgm2, I0 = 9.24 · 10−6kgm2, and K = 35 · 10−7Nms/rad. The input constraints are
u1, u2 ∈ [−0.5, 0.5]Nm, and the set of disturbances is w1, w2 ∈ [−0.001, 0.001]rad/s2.
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The differential equation describing the mobile robot is implemented in the file /benchmarks/dy-
namics/mobileRobot.m, and the parameters for the system are specified in the file /benchmarks/-
parameter/param mobileRobot.m. The name of the benchmark is benchmark = ’mobileRobot’.

6.12 Platoon

The last benchmark describes a vehicle platoon with N = 4 vehicles (see [6, Sec. IV]). This
benchmark can easily be extended to higher dimensions by increasing the number of vehicles N .

Figure 26: Visualization of a platoon with N = 3 vehicles.

The system dynamics for the platoon benchmark is as follows [6, Sec. IV]:

ẋ1 = x2 ẋ2 = u1 + w1

ẋ3 = x4 ẋ4 = u1 − u2 + w1 − w2

ẋ5 = x6 ẋ6 = u2 − u3 + w2 − w3

ẋ7 = x8 ẋ4 = u3 − u4 + w3 − w4,

where the system states are the position x1 = p1 and velocity x2 = v1 of the first vehicle, and
the relative positions x3 = p1−p2− cs, x5 = p2−p3− cs, x3 = p1−p2− cs and relative velocities
x4 = v1 − v2, x6 = v2 − v3, x8 = v3 − v4 between the remaining vehicles, where cs ∈ R+ is
the minimal safe distance. The system inputs are the accelerations u1, u2, u3 and u4 of the
four vehicles. The input constraints are u1, u2, u3, u4 ∈ [−10, 10]m/s2, the set of disturbances
is w1, w2, w3, w4 ∈ [−1, 1]m/s2, and the state constraints are x3, x5, x7 ≥ 0. Furthermore,
we consider the initial set x1(0) ∈ [−0.2, 0.2]m, x2(0) ∈ [19.8, 20.2]m/s, x3(0), x5(0), x7(0) ∈
[0.8, 1.2]m, and x4(0), x6(0), x8(0) ∈ [−0.2, 0.2]m/s.

The differential equation describing the platoon benchmark is implemented in the file /bench-
marks/dynamics/platoon.m, and the parameters for the system are specified in the file /bench-
marks/parameter/param platoon.m. The name of the benchmark is benchmark = ’platoon’.
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7 Additional Functionality

In this section we document some additional functionality of AROC that was not yet explained
in the previous sections.

7.1 Adding New Benchmark Systems

To add a new custom benchmark system to the AROC toolbox one has to create a MATLAB
function

f = benchmarkName(x, u, w)

which implements the nonlinear function f(x, u, w) from the differential equation ẋ = f(x, u, w)
(see (1)) that describes the system dynamics, where x ∈ Rn is the vector of system states,
u ∈ Rm is the vector of system inputs, and w ∈ Rq is the vector of disturbances. The name
benchmarkName of the function can then be used to select the desired benchmark for the control
algorithms (see Sec. 2). In general, it is sufficient if the function that implements the differential
equation is located somewhere on the MATLAB path. For the sake of clarity, however, we
recommend to store all functions that implement differential equations for benchmark system in
the directory /benchmarks/dynamics/.... Furthermore, we recommend to also store additional
benchmark parameters such as input constraints, initial set, etc., in a parameter file located in
the directory /benchmarks/parameter/....

As an example, we consider the autonomous car benchmark described in Sec. 6.6. The MATLAB
function that implements the differential equation for this system is:

function f = car(x,u,w)

f(1,1) = u(1) + w(1);
f(2,1) = u(2) + w(2);
f(3,1) = cos(x(2))*x(1);
f(4,1) = sin(x(2))*x(1);

end

7.2 Class results

The class results stores the reachable set of the controlled system, simulated trajectories of the
controlled system, and the reference trajectory. All control algorithms return an object of class
result (see Sec. 2) which can be used to conveniently visualize and post-process the results
from controller synthesis and online application of the controller.

An object of class results can be constructed as follows:

obj = results(reachSet, reachSetTimePoint, refTraj),

obj = results(reachSet, reachSetTimePoint, refTraj, simulation),

where obj is an object of class results and the input arguments are defined as follows:

• reachSet object of class reachSet (see [4, Sec. 6.1]) storing the reach-
able set of the controlled system.

• reachSetTimePoint MATLAB cell-array storing the reachable set at the end of
each of the Opts.N time steps.

• refTraj matrix with n rows and Opts.N columns storing the refer-
ence trajectory.
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• simulation MATLAB cell-array storing the different simulated trajec-
tories, where each cell is a struct with fields .t, .x, and .u

that store the time, the simulated trajectory, and the con-
trol inputs, respectively.

For visualization, the class results provides three function plotReach, plotReachTimePoint,
plotSimulation, and animate which we now explain in detail.

7.2.1 Function plotReach

The function plotReach visualizes a two-dimensional projection of the reachable set for the
controlled system:

han = plotReach(obj),

han = plotReach(obj, dim),

han = plotReach(obj, dim, color),

han = plotReach(obj, dim, color, options),

where obj is an object of class results and han is a handle to the plotted MATLAB graphics
object that can for example be used to add a legend to the plot. The additional input arguments
are defined as follows:

• dim integer vector dim ∈ N2
≤n specifying the dimensions for which the projection

is visualized. The default value is dim = [1,2].

• color color of the plotted set. The color can either be specified as a string with line
specifications supported by MATLAB7, e.g., ’r’, or as a 3-dimensional vector
containing the normalized RGB values for the color, e.g., [1,0,0].

• options additional MATLAB plot specifications8 passed as name-value pairs, e.g.,
’LineWidth’. The CORA toolbox defines some additional properties (see [4,
Sec. 6.1.3]), e.g., ’Order’, which are also supported.

Code examples that demonstrate how to use the function plotReach are provided in Sec. 8 and
in the directory /examples/... in the AROC toolbox.

7.2.2 Function plotReachTimePoint

The function plotReachTimePoint visualizes a two-dimensional projection of the time point
reachable set for the controlled system at the end of each of the Opts.N time steps:

han = plotReachTimePoint(obj),

han = plotReachTimePoint(obj, dim),

han = plotReachTimePoint(obj, dim, color),

han = plotReachTimePoint(obj, dim, color, options),

where the input and output arguments are defined as in Sec. 7.2.1. Code examples that demon-
strate how to use the function plotReachTimePoint are provided in Sec. 8 and in the directory
/examples/... in the AROC toolbox.

7https://www.mathworks.com/help/matlab/ref/linespec.html
8https://www.mathworks.com/help/matlab/ref/matlab.graphics.primitive.patch-properties.html
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7.2.3 Function plotSimulation

The function plotSimulation visualizes a two-dimensional projection of all simulated trajecto-
ries:

han = plotSimulation(obj),

han = plotSimulation(obj, dim),

han = plotSimulation(obj, dim, color),

han = plotSimulation(obj, dim, color, options),

where the input and output arguments are defined as in Sec. 7.2.1. Code examples that demon-
strate how to use the function plotSimulation are provided in Sec. 8 and in the directory
/examples/... in the AROC toolbox.

7.2.4 Function animate

The function animate shows an animation that visualizes the motion of the system for a simu-
lated trajectory of the controlled system:

animate(obj, benchmark)

animate(obj, benchmark, statObs, dynObs, goalSet)

animate(obj, benchmark, statObs, dynObs, goalSet, speedUp)

animate(obj, benchmark, statObs, dynObs, goalSet, speedUp, addArg)

where obj is an object of class results and the input arguments are defined as follows:

• benchmark name of the benchmark system that is considered (see Sec. 6).

• statObs MATLAB cell-array storing the static obstacles for the motion planning
problem.

• dynObs MATLAB cell-array storing the dynamic obstacles for the motion plan-
ning problem, where each entry of the cell-array is a struct with fields
.set and .time which store the set and the corresponding time interval
of the dynamic obstacles.

• goalSet target set which should be reached by the system specified as a stuct with
fields .set and .time which specify the target set and the corresponding
time interval, respectively.

•-speedUp speed-up factor for the time to make the animation run faster (speedUp
> 1) or slower (speedUp < 1).

•-addArg additional benchmark specific arguments, like for example lanelets for
the autonomous car benchmark.

The function createVideo can be used to create a video from an animation.

7.3 Class objController

As described in Sec. 1.4, the class objController is the parent class for all controller objects
that belong to motion primitive based control algorithms (see Sec. 2.1) and store the constructed
control law for one motion primitive. The class objController defines certain properties which
store all information required to construct a maneuver automaton from a list of motion primitives
with controllers represented as objects of class objController (see Sec. 3). Since the child classes
inherit these properties, it is therefore possible to construct a maneuver automaton using any
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of the motion primitive based controllers from Sec. 2.1. In addition, the class objController

provides the two functions simulate (see Sec. 7.3.1) and simulateRandom (see Sec. 7.3.2), which
simulate the online application of the constructed controller.

An object of class objController can be constructed as follows:

obj = objController(dyn, Rfin, Param),

obj = objController(dyn, Rfin, Param, occSet),

where obj is an object of class objController and the input arguments are defined as follows:

• dyn MATLAB function handle to the function f(x, u, w) in (1) describing the dy-
namics of the open-loop system.

• Rfin final reachable set Ruc(·)(tf ) at the end of the motion primitive represented
by any of the set representations from the CORA toolbox (see [4, Sec. 2.2.1]).

• Param struct containing the parameter that define the control problem (see Sec. 2.1).

• occSet occupancy set (see Sec. 3) stored as a MATLAB cell-array, where each cell is
a struct with fields .set and .time, which store the occupancy set and the
corresponding time interval, respectively. Only required if the resulting object
of class objController is used to construct a maneuver automaton.

7.3.1 Function simulate

The function simulate simulates the closed-loop system for an initial point x0 ∈ R0, a specific
disturbance signal w(t) ∈ W, and a specific measurement error signal v(t) ∈ V:

[res, t, x, u] = simulate(obj, x0, w(t))

[res, t, x, u] = simulate(obj, x0, w(t), v(t)),

where obj is an object of any class that is a child of class objController, res is an object
of class results (see Sec. 7.2), and t ∈ RM , x ∈ RM×n, and u ∈ RM×m store the time, the
states, and the inputs of the simulated trajectory, respectively, with M ∈ N+ being the number
of simulation time steps. For the disturbance signal w(t) and the measurement errors v(t) we
consider piecewise constant signals with D ∈ N+ segments, so that w(t) and v(t) are specified
as a matrix w(t) ∈ Rq×D and v(t) ∈ Rn×D.

7.3.2 Function simulateRandom

The function simulateRandom simulates the closed-loop system for E ∈ N+ randomly selected
initial points x0 ∈ R0 and randomly selected input signals w(t):

[res, t, x, u] = simulateRandom(obj)

[res, t, x, u] = simulateRandom(obj, E, fracVert, fracDistVert, D),

where obj is an object of any class that is a child of class objController, res is an object of
class results (see Sec. 7.2), fracVert ∈ [0, 1] is the fraction of initial points drawn randomly
from the vertices of the initial set R0, fracDistVert ∈ [0, 1] is the fraction of disturbance
values drawn randomly from the vertices of the disturbance set W, and D ∈ N+ is the number
of segments for the piecewise constant disturbance signals w(t) (see Sec. 7.3.1). Code examples
that demonstrate how to use the function simulateRandom are provided in Sec. 8 and in the
directory /examples/... in the AROC toolbox.
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7.4 Class terminalRegion

The class terminalRegion represents terminal regions computed with one of the algorithms from
Sec. 4. The class stores the set which represents the terminal region as well as the parameter
for the terminal controller. An object of class terminalRegion can be constructed as follows:

obj = terminalRegion(dyn, set, Param),

where obj is an object of class terminalRegion and the input arguments are defined as follows:

• dyn MATLAB function handle to the function f(x, u, w) in (1) describing the dy-
namics of the open-loop system.

• set terminal region T ⊂ Rn represented by any of the set representations from
the CORA toolbox (see [4, Sec. 2.2.1]).

• Param struct containing the system parameter (see Sec. 4).

7.4.1 Function simulate

The function simulate simulates the closed-loop system controlled by the terminal controller
for an initial point x0 ∈ R0, a specific disturbance signal w(t) ∈ W, and a specific measurement
error signal v(t) ∈ V:

[res, t, x, u] = simulate(obj, x0, tf , w(t))

[res, t, x, u] = simulate(obj, x0, tf , w(t), v(t)),

where obj is an object of any class that is a child of class terminalRegion, res is an object of
class results (see Sec. 7.2), tf ∈ R+ is the final time of the simulation, and t ∈ RM , x ∈ RM×n,
and u ∈ RM×m store the time, the states, and the inputs of the simulated trajectory, respectively,
with M ∈ N+ being the number of simulation time steps. For the disturbance signal w(t) and
the measurement errors v(t) we consider piecewise constant signals with D ∈ N+ segments, so
that w(t) and v(t) are specified as matrices w(t) ∈ Rq×D and v(t) ∈ Rn×D.

7.4.2 Function simulateRandom

The function simulateRandom simulates the closed-loop system controlled by the terminal con-
troller for E ∈ N+ randomly selected initial points x0 ∈ T inside the terminal region and
randomly selected input signals w(t):

[res, t, x, u] = simulateRandom(obj, tf )

[res, t, x, u] = simulateRandom(obj, tf , E, fracVert, fracDistVert, D),

where obj is an object of any class that is a child of class terminalRegion, tf ∈ R+ is the final
time of the simulation, res is an object of class results (see Sec. 7.2), fracVert ∈ [0, 1] is the
fraction of initial points drawn randomly from the vertices of the initial set R0, fracDistVert ∈
[0, 1] is the fraction of disturbance values drawn randomly from the vertices of the disturbance
set W, and D ∈ N+ is the number of segments for the piecewise constant disturbance signals
w(t) (see Sec. 7.4.1). Code examples that demonstrate how to use the function simulateRandom

are provided in the directory /examples/terminalRegion/... in the AROC toolbox.

7.5 Reference Trajectory

For motion primitive based controllers (see Sec. 2.1) the reference trajectory can either be
provided by the user, or it is automatically computed by solving an optimal control problem
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that aims to bring the system as close as possible to the desired goal state. In AROC, we
consider reference trajectories that correspond to piecewise constant reference inputs, where the
number of piecewise constant segments is identical to the number of time steps Opts.N for the
controller (see Fig. 27).
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Figure 27: Illustration of a reference trajectory (right) that corresponds to a piecewise constant
input signal (left) with Opts.N = 4 time steps.

A custom reference trajectory can be provided using the following settings for Opts.refTraj

(see Sec. 2):

– .x matrix storing the states of the reference trajectory. The number of rows of the
matrix has to be equal to the number of system states n, and the number of columns
has to be equal to the number of time steps Opts.N plus one since the initial state
has to be included. The final state has to be equal to Params.xf, and the initial
state has to be equal to the center of Params.R0 (see Sec. 2).

– .u matrix storing the inputs that correspond to the reference trajectory. The number
of rows of the matrix has to be equal to the number of system inputs m, and the
number of columns has to be equal to the number of time steps Opts.N. The input
is constant during the period of one time step, and all inputs have to satisfy the
input constraints.

If no custom reference trajectory is provided the reference trajectory is determined automatically
by solving an optimal control problem (see (6)). To improve the result, one can provide custom
weighting matrices Q and R by using the following settings for Opts.refTraj (see Sec. 2):

– .Q state weighting matrix Q ∈ Rn×n for the cost function of the optimal control in (6).
The default value is the identity matrix.

– .R input weighting matrix R ∈ Rm×m for the cost function of the optimal control in
(6). The default value is an all-zero matrix.

7.6 Extended Optimization Horizon

The convex interpolation control algorithm (see Sec. 2.1.2) and the generator space control
algorithm (see Sec. 2.1.3) are based on optimal control problems (see (6)). In the classical
set-up the objective for the optimal control problems is to drive the system states as close as
possible to the next point of the reference trajectory (see Fig. 28 (top)). However, this can
often be suboptimal since for many systems a certain deviation of some system states from
the reference trajectory is required in order to reduce the deviations in other system states.
For an autonomous car for example (see Sec. 6.6), a certain deviation in the orientation is
required in order to reduce the deviation in the position. One way to solve this problem is to
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use an extended optimization horizon, where the optimal control problem is solved for multiple
reference trajectory time steps, but only the control inputs for the first time step are applied to
the system (see Fig. 28 (bottom)).

Figure 28: Illustration of the convex interpolation control algorithm with (bottom) and without
(top) extended optimization horizon.

The optimal control problem with an extended optimization horizon is defined as follows:

min
u(t)

( M∑
i=1

w(i) ·
(
x(ti)− xref (ti)

)T ·Q · (x(ti)− xref (ti)
))

+

∫ tM

t=0
u(t)T ·R · u(t) dt

s.t. ẋ(t) = f(x(t), u(t),0),

(18)

where xref (t) is the reference trajectory, w : N+ → R+ is a weighting function, ti = i tf/N ,
M ∈ N+

≤N is the length of the extended optimization horizon, and N ∈ N+ is the number of
reference trajectory time steps.

The settings for an extended optimization horizon are provided with the struct Opts.extHorizon:

– .active flag specifying if an extended optimization horizon is used
(Opts.extHorizon.active = 1) or not (Opts.extHorizon.active =
0). The default value is 0.

– .horizon length of the extended optimization horizon M ∈ N+
≤N in reference trajectory

time steps (see (18)).

– .decay string specifying the type of weighting function w(·) (see (18)) that is
used. The available types are ’uniform’, ’end’, ’fall’, ’fall+End’,
’fallLinear’, ’fallLinear+End’, ’fallEqDiff’, ’fallEqDiff+End’,
’rise’, ’quad’, ’riseLinear’, and ’riseEqDiff’ (see (19) and Fig. 29).

The different types of weighting functions are defined as follows:

’uniform’ : w(i) = 1

’end’ : w(i) =

{
1, i = M

0, otherwise

’fall’ : w(i) =
1

i
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’rise’ : w(i) =
1

M + 1− i

’quad’ : w(i) =
b|i− M+1

2 |c
2 + 1

maxj={1,...,M}b|j − M+1
2 |c2 + 1

(19)

’fallLinear’ : w(i) = 1− (i− 1)
1− 1

M

M − 1

’fallEqDiff’ : w(i) =


1∑M

j=2 w(j)
, i = M

∑M
j=i+1 w(j)∑M
j=2 w(j)

, otherwise

For the weigthing functions ’fall+End’, ’fallLinear+End’, and ’fallEqDiff+End’ the last
weight is equal to one (w(M) = 1). The weighting functions ’riseLinear’ and ’riseEqDiff’

are defined as the weighting functions ’fallLinear’ and ’fallEqDiff’, but with increasing
weights.

Figure 29: Visualization of the different types of weighting functions.

7.7 Reachability Settings

AROC uses the CORA toolbox [1] to compute reachable sets. The reachabiliy algorithms im-
plemented in CORA require some user-defined settings like, e.g., maximum zonotope order,
maximum tensor order, etc. [4]. In AROC, the settings for reachability analysis using CORA
are provided with the struct Opts.cora, which has the following fields:

– .alg string specifying the reachability algorithm for nonlinear sys-
tems. The available algorithms are conservative linearization
(’lin’) and conservative polynomialization (’poly’) (see [4,
Sec. 4.2.5.1]).

– .linAlg string specifying the reachability algorithm for nonlinear sys-
tems. The available algorithms are ’standard’, ’fromStart’,
’wrapping-free’, and ’adap’. For optimization based control
in combination with linear systems only (see [4, Sec. 4.2.1.1]).
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– .tensorOrder order κ ∈ {2, 3} of the Taylor series expansion that is used to
obtain an abstraction of the nonlinear system dynamics. (see [4,
Sec. 4.2.5.1])

– .taylorTerms number of Taylor series terms used to obtain an enclosure of the
exponential matrix eAt (see [4, Sec. 4.2.1.1] and [4, Sec. 4.2.5.1]).

– .zonotopeOrder upper bound for the zonotope order of the zonotopes that repre-
sent the reachable set (see [4, Sec. 4.2.1.1] and [4, Sec. 4.2.5.1]).

– .intermediateOrder upper bound for the zonotope order during internal com-
putations. For Opts.cora.tensorOrder = 3 only (see [4,
Sec. 4.2.5.1]).

– .errorOrder upper bound for the zonotope order before the abstraction error
is computed. For Opts.cora.tensorOrder = 3 only (see [4,
Sec. 4.2.5.1]).

– .error upper bound for the Hausdorff-distance between the exact
reachable set and the computed over-approximation. For
Opts.cora.linAlg = ’adap’ only (see [4, Sec. 4.2.1.1]).

If no reachability settings are specified, the default values listed in Tab. 22 are used.

Table 22: Default reachability settings for all control algorithms implemented in AROC.
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opt. based control (lin. sys.) - ’standard’ - 10 50 30 5 see [4]
opt. based control (nonlin. sys.) ’lin’ - 2 10 50 30 5 -
conv. int. (lin. contr.) ’lin’ - 2 20 100 50 5 -
conv. int. (exact + quad. contr.) ’poly’ - 3 20 100 50 30 -
generator space control ’lin’ - 2 20 30 20 5 -
polynomial control ’poly’ - 3 20 30 20 10 -
combined control ’lin’ ’standard’ 2 10 50 20 5
safety net control ’poly’ - 3 20 30 20 5 -
reachset MPC ’lin’ - 2 10 5 3 3 -
linear system MPC - ’standard’ - 10 50 - - -
terminal region subpaving ’lin’ - 2 10 50 50 5 -
terminal region zonotope approach - ’standard’ - 4 150 - - -

7.8 Adding Custom Comfort Controllers

This section describes how to add custom comfort controllers for the safety net controller de-
scribed in Sec. 2.1.6. The comfort controller for safety net control are implemented in the direc-
tory /algorithms/safetyNetControl/comfortController. To add a new custom comfort controller
one has to add the comfort controller as a new class named objContrName to this directory,
where Name is the name of the controller (see setting Opts.controller in Sec. 2.1.6. For com-
patibility with the safety net control framework, the comfort controller class has to implement
the following functions:
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• Class constructor: Constructor of the custom controller class.

obj = objContrName(benchmark, Opts, ContrOpts).

• Initialization: Initialization of the comfort controller. This function is executed once
prior to online application.

init(obj).

• Reachability Analysis: Computation of the reachable set of the comfort controller for
one time step of the safety net controller:

[res,R, Param] = reachSet(obj,R0, iter).

• Prediction: Computation of the reachable set at the end of the allocated computation
time:

R = reachSetPred(obj, x0, iter, Param),

• Simulation: Simulation of the comfort controller for one time step of the safety net
controller.

[t, x, u] = simulate(obj, x0, w(t), v(t), Param, iter).

where obj is an object of the comfort controller class, benchmark is the name of the benchmark
system (see Sec. 6), Param is a struct storing comfort controller parameters that are later required
for simulation or prediction, iter is the current time step of the safety net controller, and res

is a flag specifying if the comfort controller is safe (res = 1) or unsafe (res = 0). Furthermore,
Opts is a struct containing the required data from the safety controller, and ContrOpts is a
struct with comfort controller settings, which can for the safety net controller be specified with
Opts.contrOpts (see Sec. 2.1.6). Moreover, x0 ∈ Rn is the initial state, R0 ⊂ Rn is the initial
set, R ∈ Rn is the final reachable set, and w(t) ∈ Rq×D, v(t) ∈ Rn×D are vectors of disturbances
and measurement errors, where D ∈ N+ is the number of disturbance changes. Finally, t ∈ RM ,
x ∈ RM×n, and u ∈ RM×m store the time, the states and the inputs for the simulated trajectory,
with M ∈ N+ being the number of simulation time steps.

Currently, a Linear Quadratic Regulator (Opts.controller = ’LQR’) and a Model Predictive
Controller (Opts.controller = ’MPC’) are implemented as comfort controllers in AROC. The
settings for the LQR controller specified in the struct Opts.contrOpts (see Sec. 2.1.6) are as
follows:

– .Q state weighting matrix Q ∈ Rn×n for LQR control.

– .R input weighting matrix R ∈ Rm×m for LQR control

The settings for the MPC controller specified in the struct Opts.contrOpts (see Sec. 2.1.6) are
as follows:

– .Q state weighting matrix Q ∈ Rn×n for LQR control.

– .R input weighting matrix R ∈ Rm×m for LQR control.

– .horizon optimization horizon for MPC in safety net controller time steps.

– .Ninter number of piecewise constant control input segments during one
time step of the safety net controller.
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8 Examples

In this section we provide some code examples that demonstrate how to apply the control
algorithms implemented in AROC. All code examples presented in this section as well as many
additional examples can found in the directory /examples/... in the AROC toolbox.

8.1 Example Motion Primitive Based Control

In this section we present a code example that demonstrates how to construct a feasible con-
troller for the turn-right maneuver of the autonomous car benchmark (see Sec. 6.6) described
in [8, Sec. 6] with the optimization based control algorithm (see Sec. 2.1.1). The generated plot
is shown in Fig. 30, and the code for the example is implemented in the file /examples/opti-
mizationBasedControl/example optBasedContr car.m in the AROC toolbox.
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Figure 30: Plot generated by the optimization based control code example in Sec. 8.1, where the
reachable set (gray) as well as simulated trajectories (black) of the controlled system are shown
for different dimensions.

% Benchmark Parameter -----------------------------------------------------

% initial set
x0 = [20;0;0;0];
width = [0.2; 0.02; 0.2; 0.2];
Param.R0 = interval(x0-width,x0+width);

% goal state and final time
Param.xf = [20; -0.2; 19.87; -1.99];
Param.tFinal = 1;

% set of admissible control inputs
width = [9.81;0.4];
Param.U = interval(-width,width);

% set of uncertain disturbances
width = [0.5;0.02];
Param.W = interval(-width,width);

% Algorithm Settings ------------------------------------------------------

% number of time steps
Opts.N = 10;
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% number of reachability analysis time steps
Opts.reachSteps = 12;
Opts.reachStepsFin = 100;

% parameters for optimization
Opts.maxIter = 10;
Opts.bound = 10000;

% weighting matrices for reference trajectory
Opts.refTraj.Q = 10*eye(4);
Opts.refTraj.R = 1/10*eye(2);

% Control Algorithm -------------------------------------------------------

% construct controller for motion primitive
[objContr,res] = optimizationBasedControl(’car’,Param,Opts);

% simulation
res = simulateRandom(objContr);

% Visualization -----------------------------------------------------------

% visualization (velocity and orientation)
figure; hold on; box on;
plotReach(res,[1,2],[.7 .7 .7]);
plotReachTimePoint(res,[1,2],’b’);
plot(Param.R0,[1,2],’FaceColor’,’w’,’EdgeColor’,’k’);
plotSimulation(res,[1,2],’k’);
xlabel(’v [m/s]’); ylabel(’\phi [rad]’);

% visualization (position)
figure; hold on; box on;
plotReach(res,[3,4],[.7 .7 .7]);
plotReachTimePoint(res,[3,4],’b’);
plot(Param.R0,[3,4],’FaceColor’,’w’,’EdgeColor’,’k’);
plotSimulation(res,[3,4],’k’);
xlabel(’x [m]’); ylabel(’y [m]’);

8.2 Example Model Predictive Control

In this section we present a code example that demonstrates the reachset model predictive control
algorithm (see Sec. 2.2) on the stirred tank reactor benchmark in Sec. 6.4 for the same initial set
as considered in [15, Sec. IV]. The generated plot is shown in Fig. 31, and the code for the exam-
ple is implemented in the file /examples/reachsetMPC/example reachsetMPC stirredTankReactor2.m
in the AROC toolbox.

% Benchmark Parameter -----------------------------------------------------

% initial state
Param.x0 = [-0.3;-30];

% goal state
Param.xf = [0;0];

% set of admissible control inputs
Param.U = interval(-20,70);

% set of uncertain disturbances
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Figure 31: Plot generated by the reachset model predictive control code example in Sec. 8.2.
The terminal region is visualized in green, the reachable set in gray, and the resulting trajectory
of the controlled system in red.

width = [0.1;2];
Param.W = interval(-width,width);

% Algorithm Settings ------------------------------------------------------

% scaling factor for the tightend set of admissible control inputs
Opts.scale = 0.9556;

% number of time steps and optimization horizon
Opts.N = 5;
Opts.tOpt = 9;

% weighting matrices for the optmial control problem
Opts.Q = diag([100,1]);
Opts.R = 0.9;

% weigthing matrices for the tracking controller
Opts.Qlqr = diag([1;1]);
Opts.Rlqr = 100;

% terminal region
A = [-1.0000 0;1.0000 0;30.0000 -1.0000;66.6526 -4.8603;-66.6526 4.8603];
b = [0.3000;0.0620;11.8400;65.0000;15.0000];
Opts.termReg = mptPolytope(A,b);

% additional settings
Opts.tComp = 0.54;
Opts.alpha = 0.1;
Opts.maxIter = 50;
Opts.reachSteps = 1;

% Control Algorithm -------------------------------------------------------

% execute control algorithm
res = reachsetMPC(’stirredTankReactor’,Param,Opts);
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% Visualization -----------------------------------------------------------

figure; hold on; box on
plot(Opts.termReg,[1,2],’FaceColor’,[100 182 100]./255,...

’EdgeColor’,’none’,’FaceAlpha’,0.8);
plotReach(res,[1,2],[.75 .75 .75]);
plotReachTimePoint(res,[1,2],’b’);
plotSimulation(res,[1,2],’r’,’LineWidth’,1.5);
xlabel(’C_A [mol/l]’); ylabel(’T [K]’);
xlim([-0.35,0]); ylim([-33,-10]);

8.3 Example Maneuver Automaton

In this section we present a code example that demonstrates how a maneuver automaton for the
autonomous car benchmark in Sec. 6.6 can be constructed and applied online to solve a Common-
Road scenario (see Sec. 1.7). The generated plot is shown in Fig. 32, and the code for the example
is implemented in the file /examples/maneuverAutomaton/example maneuverAutomaton car2.m
in the AROC toolbox.

Figure 32: Plot generated by the maneuver automaton code example in Sec. 8.3, where the
occupancy sets of the other vehicles (red) as well as the planned trajectory (blue) are visualized
for at times t = 0s (top), t = 2s (upper middle), t = 4s (lower middle), and t = 6s (bottom).

% Generate Motion Primitives ----------------------------------------------

% load postprocessing function
Post = @postprocessing_car;

% load system parameter
Params = param_car();

% define algorithm options
Opts = [];

Opts.N = 5; % number of time steps
Opts.Ninter = 5; % number of intermediate time steps
Opts.extHorizon.active = 1; % use extended optimization horizon
Opts.extHorizon.horizon = 5; % time steps for ext. horizon
Opts.extHorizon.decay = ’fall’; % weight function for ext. horizon

% define control inputs and initial states for motion primitives
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list_x0 = {[15.8773;0;0;0];[14.8773;0;0;0];[14.8773;0;0;0]};
list_u1 = {-1;0;0};
list_u2 = {0;-0.15:0.15:0;0.18};

% loop over all motion primitives
primitives = {};
counter = 1;

for i = 1:length(list_x0)

% define ranges for inputs and get initial state
[U1,U2] = meshgrid(list_u1{i},list_u2{i});

% loop over the different control input combinations
for j = 1:size(U1,1)

for k = 1:size(U1,2)

% get reference trajectory by simulating the system
x0 = list_x0{i};
u = [U1(j,k); U2(j,k)];
tspan = 0:Params.tFinal/(Opts.N*Opts.Ninter):Params.tFinal;
fun = @(t,x) car(x,u,zeros(4,1));

% get reference trajectory by simulating the system
[t,x] = ode45(fun,tspan,x0);

% provide reference trajectory as an additional input argument
Opts.refTraj.x = x’;
Opts.refTraj.u = u*ones(1,size(x,1)-1);

% update parameter
Params.xf = x(end,:)’;
Params.R0 = Params.R0 + (-center(Params.R0)) + x0;

% compute controller for the current motion primitive
objContr = generatorSpaceControl(’car’,Params,Opts,Post);

primitives{counter} = objContr;
counter = counter + 1;

end
end

end

% Construct Maneuver Automaton --------------------------------------------

% assemble input arguments
shiftFun = @shiftInitSet_car;
shiftOccFun = @shiftOccupancySet_car;

% construct maneuver automaton
MA = maneuverAutomaton(primitives,shiftFun,shiftOccFun);

% Online Control ----------------------------------------------------------

% load a CommonRoad traffic scenario
scenario = ’ZAM_Zip-1_19_T-1’;
[statObs,dynObs,x0,goalSet,lanelets] = commonroad2cora(scenario);
x0 = [x0.velocity; x0.orientation; x0.x; x0.y];

% plan a verified trajectory with the maneuver automaton
ind = motionPlanner(MA,x0,goalSet{1},statObs,dynObs,’Astar’,@costFun);
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% Visualization -----------------------------------------------------------

% visualize the planned trajectory for different times
figure
times = {0,2,4,6};

for i = 1:length(times)
subplot(length(times),1,i); hold on; box on;
for j = 1:length(lanelets)

plot(lanelets{j},[1,2],’FaceColor’,[.6 .6 .6],’EdgeColor’,’k’);
end
plotPlannedTrajectory(MA,ind,x0,[],[0 0.7 0],’EdgeColor’,’k’);
plotPlannedTrajectory(MA,ind,x0,interval(times{i}),’b’);
plotObstacles([],dynObs,interval(times{i}-0.05,times{i}+0.05));
xlim([-150,50]); ylim([0,15]); xticks([]); yticks([]);

end

% Auxiliary Functions -----------------------------------------------------

function cost = costFun(obj,node,goalSet)
% compute the costs for A* star search for the current node

% compute final state and final time at the end of the motion primitive
index = node.ind(end);
occSet = updateOccupancy(obj,node.parent.xf,index,node.parent.time);
xCurr = center(occSet{end}.set);
time = node.parent.time + obj.primitives{index}.tFinal;

% compute estimated remaining time for reaching the goal set
c = center(goalSet.set);
dist = sqrt(sum(c-xCurr).ˆ2);
v = node.parent.xf(1);
h = dist/v;
g = time;

% compute costs for the node
cost = h + g;

end

8.4 Example Terminal Region

In this section we present a code example that demonstrate how to construct a safe terminal
region for the double integrator benchmark (see Sec. 6.1) using the zonotope approach for linear
systems in Sec. 4.2. The generated plot is shown in Fig. 33, and the code for the example is imple-
mented in the file /examples/terminalRegion/example termReg zonoLinSys doubleIntegrator.m
in the AROC toolbox.

% Benchmark Parameter -----------------------------------------------------

% set of admissible control inputs
Param.U = interval(-1,1);

% set of uncertain disturbances
width = [0.1; 0.1];
Param.W = interval(-width,width);

% Algorithm Settings ------------------------------------------------------
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Figure 33: Terminal region (green) for the double integrator benchmark together with simula-
tions (black) of the terminal controller.

% search domain
Opts.Tdomain = interval(-ones(2,1),ones(2,1));

% number of time steps and time step size
Opts.N = 30;
Opts.timeStep = 0.1;

% weighting matrices for the LQR controller
Opts.Q = eye(2);
Opts.R = eye(1);

% parameters for optimization
Opts.genMethod = ’sampling2D’;
Opts.costFun = ’sum’;

% Terminal Region ---------------------------------------------------------

% construct terminal region
T = computeTerminalRegion(’doubleIntegrator’,’zonoLinSys’,Param,Opts);

% simulate the terminal region controller
tFinal = 10;
res = simulateRandom(T,tFinal);

% Visualization -----------------------------------------------------------

figure; hold on; box on;
plot(T.set,[1,2],’FaceColor’,[100 182 100]./255,...

’EdgeColor’,’none’,’FaceAlpha’,0.8);
plotSimulation(res,[1,2],’k’);
xlim([-1.5;1.5]); ylim([-1.2,1.2]);
xlabel(’x [m]’); ylabel(’v [m/s]’);
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8.5 Example Conformant Synthesis

Here we present a code example that demonstrates how conformant synthesis as described in
Sec. 5 can be used to construct an over-approximative model from measurements of the real
system:

% load measurements
load(’measurements_car’);

% algorithm settings
Opts.group = 6; % number of measurements for each opt. problem
Opts.measErr = true; % represent uncertainty using measurement error
Opts.set = ’interval’; % set representation for uncertainty sets

% conformant synthesis
[W,V] = conformantSynthesis(’car’,M,Opts)

This code produces the following command line output:

W =

[-0.0055, 0.0039]

[-0.0013, 0.0004]

V =

[-0.0919, 0.0686]

[-0.0031, 0.0049]

[-0.0397, 0.0274]

[-0.0052, 0.0368]
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[6] B. Schürmann and M. Althoff, “Optimal control of sets of solutions to formally guarantee constraints
of disturbed linear systems,” in Proc. of the American Control Conference, 2017, pp. 2522–2529.

62

https://tumcps.github.io/CORA/data/Cora2022Manual.pdf


REFERENCES

[7] H. Kwakernaak and R. Sivan, Linear optimal control systems. Wiley, 1972.
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