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Abstract

In this manual we present the philosophy, architecture, and capabilities of the Automated
Reachset Optimal Control (AROC) toolbox. AROC is a MATLAB toolbox that automati-
cally synthesizes verified controllers for solving reach-avoid problems using reachability anal-
ysis. Two different types of controllers are considered: For model predictive control verified
controllers are constructed in real-time during online application; The motion primitive based
control algorithms, on the other hand, first synthesize verified controllers for many different
motion primitives offline, which are then used for online planning with a maneuver automa-
ton. AROC currently contains one model predictive control algorithm and the three motion
primitive based control algorithms optimization based control, convez interpolation control,
and generator space control. Furthermore, the toolbox provides an implementation of a ma-
neuver automaton for convenient online-planning with motion primitives. AROC is released
under the |(GPLv3| license.
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1 INTRODUCTION

1 Introduction

In this section we give a short introduction to the philosophy and architecture of the AROC
toolbox, we describe how AROC can be installed, and we explain how to connect AROC with
other tools.

1.1 Getting Started

The acronym AROC stands for Automated Reachset Optimal Control. AROC is a toolbox for
the automated construction of verified controllers for solving reach-avoid problems. A typical
reach-avoid problem is shown in Fig. It Given a set of initial states R the goal is to construct
a controller that drives all states inside the initial set as close as possible to a desired final state
xy while not colliding with the sets of unsafe sets depicted in red in Fig. Il For the system
dynamics, we consider the very general case of nonlinear systems with input constraints that are
influenced by bounded uncertainties (see (Il)). To verify that the system does not collide with
any unsafe set and that the input constraints are satisfied for all times despite disturbances are
acting on the system, we use reachability analysis. In particular, we use the CORA [I] toolbox
to compute reachable sets.

RO o b _.""@

Figure 1: Illustration of a typical reach-avoid problem, where the unsafe sets are depicted in
red, R is the initial set, xy is the goal state that should be reached, and the reachable set of
the controlled system is shown in gray.

AROC considers two different types of controllers for solving reach-avoid problems: For model
predictive control (see Sec. 2.2)) a verified controller is constructed in real-time during online
application; The motion primitive based control algorithms (see Sec. 2.1]), on the other hand,
construct verified controllers for many different motion primitives offline, which are the used
for online-planning with a maneuver automaton (see Sec. ). Currently, the reachset model
predictive control algorithm in [2], as well as the three motion primitive based control approaches
optimization based control [3], convex interpolation control [4], and generator space control [5]
are implemented in AROC. In addition, AROC contains a maneuver automaton class for solving
online-planning tasks with motion primitives (see Sec. B).

The AROC toolbox provides some predefined benchmark systems (see Sec. M), and additional
custom benchmarks can be easily added (see Sec. [B.]). To get started with AROC, we recom-
mend to read the mathematical problem description at the beginning of Sec. 2 and to take a
look at the code examples that are provided in Sec. [6] which can also be found in the directory

/examples/... in the AROC toolbox.
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1.2 Installation

The AROC toolbox can be conveniently installed by simply adding the directory that contains
the code to the MATLAB path. In addition, AROC requires the following third-party software:

e CORA: CORA is a MATLAB toolbox for reachability analysis. AROC is compatible with
the 2020 release of CORA, which can be download from the website http://cora.in.tum.de
or the public repository https://github.com/TUMcps/CORA. After the download, add the
folder containing the CORA toolbox to your MATLAB path.

e ACADO: ACADO is a C++ toolbox for solving optimal control problems. AROC re-
quires the MATLAB interface of the ACADO toolbox, which can be found at
http://acado.github.io/matlab_overview.html. AROC also works if ACADO is not
installed, but the computations might be significantly slower.

e MPT and YALMIP: MPT is a toolbox for geometric computations that is used by the
CORA toolbox, and YALMIP is a toolbox for solving optimization problems of various
types. MPT and YALMIP can be conveniently installed together using the installation
routine described in https://www.mpt3.org/Main/Installation.

After installation it is advisable to run the unit-tests (see Sec. [LH) to check if everything is
set-up correctly.

1.3 Architecture

A UML class diagram for the AROC toolbox is shown in Fig. 2k All motion primitive based con-
trol algorithms return an object of class objOptBasedContr, objConvInterpContr, or
objGenSpaceContr, respectively. These objects store the parameter of the motion primitive, the
constructed controller, and the occupancy set (see Sec.[5.3]). The three classes objOptBasedContr,
objConvInterpContr, and objGenSpaceContr all inherit certain properties from the parent class
objController. Since the class maneuverAutomaton requires a list of motion primitives repre-
sented as objects of class objController as input argument (see Sec. [3)), it is therefore possible
to construct a maneuver automaton with any of the implemented motion primitive based con-
trollers, or even mix motion primitives generated with different controllers. The class results
stores the reachable sets computed during controller synthesis and simulated trajectories from
the online application of the control algorithm (see Sec. [5.2]).

<—  Composition objController (see Sec. R3]
<l— Generalization AN
—@— Interface
objOptBasedContr —
maneuverAutomaton (see Sec.[3) «@——) objConvInterpContr —
results (see Sec. [5.2) objGenSpaceContr —

Figure 2: Unified Modeling Language (UML) class diagram for AROC.
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1.4 Code Documentation

In addition to the documentation provided in this manual AROC has HTML code documentation
that can be viewed and browsed directly in MATLAB. This code documentation contains a short
description as well as a list of input and output arguments for each function contained in the
AROC toolbox. To view the HTML code documentation type the command

>> doc

into the MATLAB command line, which will open a window containing the MATLAB doc-
umentation. The documentation for the AROC toolbox can be found under the menu item
Supplemental Software.

For developers: The HTML code documentation is automatically generated from the function
headers. To generate the documentation type the command

>> pubishHelp

into the MATLAB command line. To generate the HTML documentation for a single MATLAB
function type

>> publishFunc(’fileName’)

which opens a new window showing the generated documentation for the file.

1.5 Unit Tests

In order to guarantee that AROC functions correctly and that there are no bugs in our imple-
mentation we integrated several unit-tests into the toolbox. These tests check for example if the
input and state constraints are satisfied, or that the reachable set contains all trajectories of the
controlled system. In order to execute all unit-tests type the command

>> runUnitTests

into the MATLAB command line. To execute a single unit test, simply type the name of the
test file. All unit-test files are located in the directory /unitTests/... in the AROC toolbox.

It is advisable to run the unit-tests after installation to check if everything is set-up correctly.
Developers should run the unit test every time they changed something on the implementation
of the algorithms.

1.6 Connections to CommonRoad

The CommonRoad framework [6] provides multiple thousands of different traffic scenarios as
benchmarks for testing motion planning algorithms for autonomous cars. AROC provides an
interface to easily load these CommonRoad benchmarks for testing the control algorithms. In
order to load a CommonRoad benchmark into AROC, the following two steps are required:

1. Download the CommonRoad file for the selected traffic scenario from the CommonRoad
website: https://commonroad.in.tum.de

2. Use the function commonroad2cora provided by the CORA toolbox [I] to load initial state,
goal set, as well as static and dynamic obstacles for the planning problem.


https://commonroad.in.tum.de
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The syntax for loading a CommonRoad file with the function commonroad2cora is as follows:

[stat0Obs, dyn0Obs, x0, goalSet, lanelets] = commonroad2cora(filename),

where filename is a string with the file name of the CommonRoad file that should be loaded,
and the output arguments are defined as:

e statObs

e dynQObs

e x0

e goalSet

e lanelets

MATLAB cell-array storing the static obstacles for the planning problem as
objects of class polygon (see [7]).

MATLAB cell-array storing the dynamic obstacles for the planning problem as
objects of class polygon (see [7]). In addition, the corresponding time interval
for each obstacle is stored.

struct with fields .x, .y, .time, .velocity and .orientation storing the
initial state for the planning problem.

struct with fields .set, .time, .velocity and .orientation storing the goal
set for the planning problem.

MATLAB cell-array storing the lanelets for the traffic scenario as objects of
class polygon (see [7]).

Initial state, goal set, static obstacles, and dynamic obstacles can then be used for online planning
with a maneuver automaton as described in Sec. In Fig.Blan exemplary CommonRoad traffic
scenario is visualized. A code example that demonstrates how a CommonRoad benchmark can be
solved with AROC is provided in Sec.[6.5land in the directory /example/maneuverAutomaton/...
in the AROC toolbox.

-40 1 1 1 1 1 1
0 20 40 60 80 100 120 140

T

Figure 3: Visualization of the CommonRoad benchmark DEU_Ffb-1-2_5-1. The dynamic ob-
stacles imposed by the other cars are shown in blue, the goal set is shown in red, and the initial
state for the ego vehicle is shown in green.
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2 Control Algorithms

AROC is a toolbox that automatically synthesizes verified controllers for solving reach-avoid
problems. We consider general nonlinear disturbed systems defined by the differential equation

(t) = f(z(t),u(t),w(t)), x(0)€ Ro, x(t) € X, u(t) €U, w(t) eW, (1)

where z(t) € R"™ is the vector of system states, u(t) € R™ is the vector of control inputs,
w(t) € RY is the vector of disturbancesm and f: R™ x R™ x R? — R™ is a Lipschitz continuous
function. Furthermore, we consider a set of initial states Ry C R"™, a set of state constraints
X C R", a set of input constraints & C R™, and a set of disturbances W C R4%. Given a control
law wu.(z(t),t), the dynamic of the controlled system is

x(t) - f(x(t)auc(x(t)7t)7w(t))' (2)

Let us denote the solution to (2)) at time ¢ by &(¢,x(0), u.(-),w(:)). The reachable set of the
controlled system in (2]) is defined as

Ry (8) = {€(t:2(0),uel), w()) | 2(0) € Ro, ¥r € 0,4] w(r) e W}, (3)

AROC automatically synthesizes a suitable control law wu.(z(t),t) such that input and state
constraints are satisfied:

Vit € [O,tf], V.%'(t) S Ruc()(t) : uc(x(t),t) el

: (4)
vt € [0,ts], Vz(0) € Ro, Yw(-) € W: &(t,2(0), uc(-), w(-)) € X,

where t; is the final time of the control action. The objective that the controller aims to fulfill
depends on the controller type: The motion primitive based control algorithms in Sec. 2] aim
to drive all states from the initial set at the final time ¢; as close as possible to a desired final
state xy € R". The model predictive control algorithm in Sec. on the other hand tries to
stabilize the system around a desired equilibrium point x; for an infinite time horizon t; = oo.
To achieve this, the model predictive control algorithm considers a terminal region 7 around
xy, and the goal is to reach this terminal region in finite time.

Many of the control algorithms implemented in AROC require to solve optimal control problems.
An optimal control problem finds the control input that minimizes a certain cost function [8].
In this toolbox we consider optimal control problems defined as

oy (w(ty) —2p)" - Q- (w(ty) —xf) + / "u(®)” - R-ult) dt
u(t t=0

(5)
sid. @) = f(z(t),u(t),0),

where the input u(t) is piecewise constant, @ € R™*" is the state weighting matrix, and R €
R™*™ is the input weighting matrix.

Next, we describe the different control algorithms implemented in AROC in detail.
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2.1 Motion Primitive Based Control

The motion primitive based control algorithms described in this chapter automatically synthe-
size feasible and close-to-optimal controllers for single motion primitives offline. These motion
primitives can then be used to construct a maneuver automaton (see Sec. Bl), which is then
applied for online control (see Sec. B.H).

For each motion primitive the goal of the control action is to drive all states inside the initial
set at the final time ¢; as close as possible to the desired final state x:

min p(Ruc(_)(tf),xf), (6)

ue(z,t)

where R, (.)(ty) is the reachable set of the controlled system at the final time ¢y (see ([3])), and
P(Ruoy(ty),zp) — R{ is a cost function measuring the distance between the states in Rue(tr)
and the desired final state z . There exist many different possibilities for suitable cost functions,
like for example the maximum euclidean distance:

P(Ru.(y(tp),zy) = LA |z — 242

The syntax for executing the control algorithm to synthesize a suitable controller is identical for
all motion primitive based control algorithms:

[obj,res| = controlAlgorithmName(benchmark, Param)
[obj,res| = controlAlgorithmName(benchmark, Param, Opts)
[obj,res| = controlAlgorithmName(benchmark, Param, Opts, Post),

where controlAlgorithmName € {optimizationBasedControl, convexInterpolationControl,
generatorSpaceControl} is the name of the control algorithm, the input arguments are defined
as

e benchmark name of the benchmark system that is considered (see Sec. []).

e Param struct containing the parameter that define the control problem

- .RO initial set Ro (see ([dl)) represented as an object of class
interval (see [7, Sec. 2.2.1.2]).

-.U set of input constraints U (see (II)) represented as an object
of class interval (see [7, Sec. 2.2.1.2]).

—.W set of disturbances W (see (IJ)) represented as an object of
class interval or zonotope (see [7, Sec. 2.2.1}).

- .X set of state constraints X’ (see ({l)) represented as an object
of class mptPolytope (see [7, Sec. 2.2.1.4]).

— .tFinal final time ¢; (see (@)).

— .xf desired final state z¢ (see (@)).
e Opts struct containing the settings for the control algorithm. Since the settings are
different for each control algorithm they are documented in Sec. 211l 2.1.2]
and 213
e Post MATLAB function handle to the post-processing function that computes the

occupancy set from the reachable set (see Sec. B.2]). This argument is only
required if the motion primitive controller is used to construct a maneuver
automaton (see Sec. [3)).
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and the output arguments are defined as

e obj object of class contrObj (see Sec.[1.3]) that stores the synthesized control law.

e res object of class result (see Sec.[5.2) that stores the computed reachable set of
the controlled system.

In the following sections we describe the motion primitive based control algorithms that are
implemented in AROC in detail.

2.1.1 Optimization Based Control

Optimization-based control implements the control algorithm described in [3]. While the work
in [3] specialized on linear systems, we extended the approach to also handle systems with
nonlinear dynamics. However, since reachability analysis for linear systems is computationally
much more efficient than reachability analysis for nonlinear systems, our implementation of
the algorithm detects automatically if the system is linear or nonlinear and then executes the
corresponding reachability algorithm.

K4 K,
. Ks Xy
Ro| ® T 9\\‘\@——""@

Figure 4: Illustration of the optimization based control algorithm with N = 3 constant segments.

1

The control algorithm uses the following control law:

uc(xa t) = uref(t) + K(t)(.%'(t) - mT"Gf(t))a

where u,.f(t) € R™ is the piecewise constant control input for the reference trajectory (see
Sec.[5.4)), zrer(t) € R™ is the state of the reference trajectory (see Sec.[5.4]), and K (t) € R™*" is
a time-varying feedback matrix. The optimization based control algorithm determines a feasible
and close-to-optimal value for the time-varying feedback matrix K (t) by solving the following
optimization problem:

i R t
mi p(Ru(eo(tr): )

sit. YVt € [0,tp], Vao(t) € Ry, ()(t) 1 Upep(t) + K(t)(z(t) — Trep(t)) €U
vt € [0,tf], Vz(0) € Ro, Yw(-) € W: &(t,z(0), uc(-), w(-)) € X,

where p(-) is the cost function (see (@)). In order to express the optimization problem with a
finite number of optimization variables, a piecewise constant time-varying feedback matrix K ()
is used: Vt € [(i — 1)At,iAt] - K(t) = K;, i € {1,...,N}, where At = ty/N and N € N3
is the number of piecewise constant segments (see Fig. []). Furthermore, in order to reduce the
number of variables for the optimization problem, we use a Linear Quadratic Regulator (LQR)
approach [9, Chapter 3.3] to compute the feedback matrices K;. Instead of directly optimizing
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the feedback matrices K; we then optimize the weighting matrices Q € R™*" R € R™*™ from
the cost function of the Linear Quadratic Regulator, where we choose the weighting matrices to
be diagonal. For solving the optimization problem (7)), we use MATLABs fmincon algorith.

The syntax for executing the optimization based control algorithm is as follows:

[obj, res] = optimizationBasedControl(benchmark, Param)

[obj, res] = optimizationBasedControl(benchmark, Param, Opts)

[obj, res] = optimizationBasedControl(benchmark, Param, Opts,Post),

where benchmark, Param, Post, obj, and res are defined as at the beginning of Sec. 2.1, and

Opts is a struct that contains the following algorithm settings:

- .N

— .reachSteps

— .reachStepsFin

— .maxIter

— .bound

— .refTraj

— .COra

Code examples for the optimization based control algorithm are provided in Sec. and in the

number of piecewise constant segments N for the time-varying
feedback matrix K (t). The default value is 5.

number of time steps for reachability analysis during one of the NV
piecewise constant segments. The default value is 10.

number of time steps for reachability analysis during one of the
N piecewise constant segments for the computation of the final
reachable set after the optimization finished. To accelerate the
optimization it is advisable to use less reachability time steps dur-
ing optimization than for the computation of the final reachable
set. The default value is 15.

maximum number of iterations for MATLABs fmincon algo-
rithm that is used to solve the optimization problem (7)) (see
https://de.mathworks.com/help/optim/ug/fmincon.html).
The default value is 100.

scaling factor § between the upper and the lower bound for the
entries of the LQR weighting matrices @@ and R. It holds for all
matrix entries Q; ; and R; ; that Q; ; € [1/6,0] and R;; € [1/6,0].
The default value is 1000.

struct containing the settings for the reference trajectory (see
Sec. [5.4]).

struct containing the settings for reachability analysis using the

CORA toolbox (see Sec. [.6]).

directory /example/optimizationBasedControl/... in the AROC toolbox.

"https://de.mathworks.com/help/optim/ug/fmincon.html

10
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2.1.2 Convex Interpolation Control

The convex interpolation control algorithm implements the approach in [4]. For convex interpo-
lation control the time horizon is divied into N time steps, where in each time step the following
procedure is applied (see Fig. [):

1. The reachable set at the beginning of the time step is enclosed by a parallelotope.
2. Optimal control problems (see (Bl)) are solved for all vertices of the parallelotope.

3. The control law is obtained by interpolation between the optimal control inputs for the
parallelotope vertices (see [4, Sec. 4]).

Since the interpolation control law in [4, Sec. 4] is quite complex, it is often advisable to use
a linear or a quadratic approximation instead (see [4, Sec. 5]). While the optimization based
controller in Sec. 2.1.T] considers continuous feedback, the convex interpolation control algorithm
only measures the system state at the beginning of each time step, which results in discrete-time
feedback. Each time step consists of N, intermediate time steps, which correspond to the
piecewise constant segments of the control input for the optimal control problems.

Figure 5: Illustration of the convex interpolation control algorithm with N = 3 time steps.

The syntax for executing the convex interpolation control algorithm is as follows:

[obj,res] = convexInterpolationControl(benchmark, Param)
[obj, res| = convexInterpolationControl(benchmark, Param, Opts)

[obj, res| = convexInterpolationControl(benchmark, Param, Opts,Post),

where benchmark, Param, Post, obj, and res are defined as at the beginning of Sec. 21} and
Opts is a struct that contains the following algorithm settings:

— .controller string specifying the control law that is used. The available control laws
are ’exact’ (interpolation control law, see [4, Sec. 4]), ’quadratic’
(quadratic approximation), and ’linear’ (linear approximation, see [4}
Sec. 5]). The default value is *linear’.

- .N number of time steps N. The default value is 10.
— .Ninter number of intermediate time steps Njpter. The default value is 4.

— .reachSteps number of time steps for reachability analysis during one of the Njer
intermediate time steps. The default value is 20.

-.Q state weighting matrix Q € R™*" for the optimal control problems (see
(B)). The default value is the identity matrix.

- .R input weighting matrix R € R™*"™ for the optimal control problems (see
(). The default value is an all-zero matrix.

11
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— .parallel flag specifying if parallel computing is used (Opts.parallel = 1) or not
(Opts.parallel = 0). The default value is 0.

— .approx struct containing the settings for the approximation of the interpolation
control law (for Opts.controller = ’linear’ and Opts.controller
= ’quadratic’ only).

— .method string specifying the method that is used to obtain the
approximated control law. The available methods are
’scaled’, ’optimized’, and ’center’. The default
value is ’scaled’.

— .lambda parameter A € [0,1] representing the tradeoff between
matching the optimal control inputs at the vertices (A =
0) and matching the interpolation control law (A = 1).
The default value is 0.5.

— .polyZono struct containing the settings for restructuring polynomial zonotopes
(for Opts.cora.alg = ’poly’ only).

- .N number of time steps after which the polynomial zono-
tope representing the reachable set is restructured.
The default value is co (no restructuring).

— .orderDep zonotope order of the dependent part of the polyno-
mial zonotope after restructuring. The default value
is 10.

— .order overall zonotope order of the polynomial zonotope af-
ter restructuring. The default value is 20.

— .refTraj struct containing the settings for the reference trajectory (see Sec. [(.4).

— .extHorizon struct containing the settings for an extended optimization horizon (see
Sec. [5.5)).

— .cora struct containing the settings for reachability analysis using the CORA
toolbox (see Sec. [B.6]).

Code examples for the convex interpolation control algorithm are provided in Sec. and in
the directory /example/convexInterpolationControl/... in the AROC toolbox.

2.1.3 Generator Space Control

One of the main disadvantages of the convex interpolation controller in Sec. is that the
computational complexity grows exponentially with the number of system dimensions n. The
reason for this is that for convex interpolation control an optimal control problem is solved for
each vertex of a parallelotope enclosure of the reachable set, and a parallelotope has 2™ vertices.
The generator space controller proposed in [5] circumvents this problem by solving one optimal
control problem for each generator of the parallelotope, instead of for each vertex (see Fig. [@]).
Since a parallelotope has only n generators, this is computationally much more efficient.

As for convex interpolation control, the time horizon is divided into N time steps, and a feed-
forward controller is computed for each of these time steps. Furthermore, each time step consists
of Njnter intermediate time steps, which correspond to the piecewise constant segments of the
control input for the optimal control problems. To obtain the control law from the optimal

12
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Figure 6: Illustration of the generator space control algorithm with N = 3 time steps.

control inputs for the generators, the generator space controller expresses each state inside the

reachable set as a linear combination of the generators.

The syntax for executing the generator space control algorithm is as follows:

[obj, res| = generatorSpaceControl(benchmark, Param)

[obj, res| = generatorSpaceControl(benchmark, Param, Opts)

[obj, res| = generatorSpaceControl(benchmark, Param, Opts, Post),

where benchmark, Param, Post, obj, and res are defined as at the beginning of Sec. 1] and

Opts is a struct that contains the following algorithm settings:

.N
.Ninter

.reachSteps

.refInput

.refTraj

.extHorizon

.Cora

Code examples for the generator space control algorithm are provided in Sec. and in the

number of time steps N. The default value is 10.
number of intermediate time steps Njpter. The default value is 4.

number of time steps for reachability analysis during one of the
Ninter intermediate time steps. The default value is 10.

state weighting matrix Q € R™*" for the optimal control problems
(see ([Bl)). The default value is the identity matrix.

input weighting matrix R € R™*™ for the optimal control prob-
lems (see (B))). The default value is an all-zero matrix.

flag specifying if the control input from the reference trajectory is
used to control the center of the reachable set (Opts.refInput =
1) or not (Opts.refInput = 0). The default value is 0.

struct containing the settings for the reference trajectory (see
Sec. [5.4]).
struct containing the settings for an extended optimization horizon

(see Sec. 5.H)).

struct containing the settings for reachability analysis using the

CORA toolbox (see Sec. b.6]).

directory /example/generatorSpaceControl/... in the AROC toolbox.

13
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2.2 Model Predictive Control

For model predictive control (MPC), AROC implements the reachset MPC algorithm in [2].
The algorithm aims to stabilize the system for an infinite time horizon ¢ty = oco. To achieve
this, we consider a terminal region 7 around the equilibrium point xy € 7 for which we have a
controller that is guaranteed to stabilize the system around x; for all states inside the terminal

region. The goal is then to synthesize a suitable control law that drives the system from its
current state to the terminal region while minimizing a certain cost function J(x,u) (see Fig. 7).

tcomp T
\ i
RO ‘/—"— O

—

Figure 7: Illustration of the reachset model predictive control algorithm.

In order to drive the system to the terminal region we apply the following tracking-controller:

uc(x(t)’ t) = uref(t) + K(t)(x(t) - xref(t))’ (8)

where the piecewise constant reference input u,f(t) for the reference trajectory x,.f(t) is deter-
mined by solving an optimal control problem (see (Bl)) that minimizes the cost function J(z,u)
for a certain optimization horizon t,,;. The number of piecewise constant segments for wu,. f(t)
is N, and the feedback matrix K (t) in (§]) is determined by applying the Linear Quadratic Reg-
ulator (LQR) approach [9, Chapter 3.3] with weighting matrices Q4 and Rjg, to the linearized
system. Using the tracking-controller in (§) we then apply the following procedure which is
commonly used in MPC:

1. Based on the current measurement of the system state, we compute an optimal control
law wuc(x(t),t) that minimizes the cost function J(z,u) and guarantees that the system
reaches the terminal region 7 after time t,;.

2. We apply the optimal control law u.(z(t),t) for the time period t € [0, topt /N].

3. We measure the system state and try to compute a control law u.(z(t),t) with lower costs
than the old control law wu.(z(t),t) based on the updated system state.

This procedure is repeated until the system reaches the terminal region. One key difference of
the reachset MPC algorithm compared to other MPC approaches is that reachability analysis
is used to verify that input and state constraints are satisfied despite disturbances are acting on
the system.

One problem that we are facing with the procedure described above is that the computation
of the new optimal control law u.(x(t),t) as well as the verification of the control law using
reachability analysis require a certain computation time t.4y,,. During this time, however, the
system will evolve further so that the state of the system after the computation finished will
be different from the state that we measured before the computation. Since we computed
and verified the new optimal control law based on the state measured before the start of the
computation, our new control law would therefore be invalid. To solve this issue the reachset
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MPC algorithm first predicts with reachability analysis where the system will be after the
computation finished, and then computes a new optimal control law based on the set of predicted
states (see Fig. [7)).

Many different approaches exist for computing a terminal region [I0HI2]. For our implementation
of the reachset MPC algorithm the only requirement is that the terminal region is represented as
a polytope, so any of these approaches can be used to obtain 7. For the costs J(x,u) we use the
same cost function as for the optimal control problem in (Bl with weighting matrices @ and R.
However, we add an additional contraction constraint (see [2, Eq. (13)]) to the optimal control
problem in order to guarantee that the terminal region is reached in finite time. Furthermore,
we solve the optimal control problem using a tightened set of input constraints & C U so that
some control input is left for the feedback part of the tracking-controller in (g]).

The syntax for running the reachset model predictive control algorithm is as follows:
res = reachsetMPC(benchmark, Param, Opts),

where the input arguments are defined as

e benchmark name of the benchmark system that is considered (see Sec. H).
e Param struct containing the parameter that define the control problem

— .RO initial set Ry (see ({)) represented as an object of class interval
(see [T, Sec. 2.2.1.2]).

— .U set of input constraints U (see (IJ)) represented as an object of
class interval (see [7, Sec. 2.2.1.2]).

—.W  set of disturbances W (see (II)) represented as an object of class
interval or zonotope (see [7, Sec. 2.2.1]).

— .xf desired final state x5 (see (@)).

e Opts struct containing the settings for the control algorithm.
— .t0pt final time t,,; for the optimization.
- .N number of time steps N. The default value is 10.

— .reachSteps number of time steps for reachability analysis during one
of the N time steps. The default value is 10.

- .U set of tightened input constraints &/ C U represented as
an object of class interval (see [7, Sec. 2.2.1.2]).

— .termReg: terminal region T represented as an object of class
mptPolytope (see [7, Sec. 2.2.1.4]).
-.Q state weighting matrix @ € R™*™ for the cost function of

the optimal control problem (see (Bl)). The default value
is the identity matrix.

- .R input weighting matrix R € R™*™ for the cost function
of the optimal control problem (see (). The default
value is an all-zero matrix.

- .Qlgr state weighting matrix Q4 € R™*™ used to compute the
feedback matrix K for the tracking controller with an
LQR approach. The default value is the identity matrix.
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Rme

— .Rlqgr input weighting matrix R € used to compute the
feedback matrix K for the tracking controller with an
LQR approach. The default value is an all-zero matrix.

— .realTime flag specifying if the algorithm only switches to a new
solution if the computation time is less than the allocated
time Opts.tComp (Opts.realTime = 1), or if this real-
time constraint is not considered (Opts.realTime = 0).
The default value is 1.

— .tComp allocated computation time tcopmp.

— .alpha contraction rate « for the contraction constraint (see [2
Eq. (13)]). The default value is a = 0.1.

— .maxIter maximum number of optimization iterations for the op-
timal control problem. The default value is 10.

— .cora struct containing the settings for reachability analysis us-
ing the CORA toolbox (see Sec. [£.6]).

and the output arguments are defined as

e res object of class result (see Sec.[0.2]) that stores the computed reachable set as
well as the trajectory traversed by the controlled system.

Code examples for reachset model predictive control are provided in Sec. and in the directory

/example/reachsetMPC/... in the AROC toolbox.
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3 Maneuver Automata

In Sec. 2.l we described how motion primitive based control algorithms can be used to construct
feasible controllers for single motion primitives offline. This section now explains how a maneuver
automaton can be generated from these offline generated motion primitives (see Sec B1l), and
how online planning tasks can be solved with this maneuver automaton (see Sec. BH). An
illustration of online motion planning with a maneuver automaton is shown in Fig. Bl

Figure 8: Ilustration of online motion planning for an autonomous vehicle with a maneuver
automaton. The reachable set of the vehicle center Ruc(.)(t) is shown in light gray, and the
occupancy set O(t) of the vehicle is depicted in dark gray.

3.1 Class maneuverAutomaton

Maneuver automata are in AROC represented by the class maneuverAutomaton. An object of
class maneuverAutomaton can be constructed as follows:

obj = maneuverAutomaton(primitives, shiftFun, shiftOccFun),

where obj is an object of class maneuverAutomaton, and the input arguments are defined as:

e primitives  MATLAB cell-array storing the motion primitives, where each motion prim-
itive is represented as an object of class objController (see Sec. and

Sec. 2.1]).

e shiftFun MATLAB function handle to a system specific function shiftInitSet that
describes how to translate a set of system states under consideration of
invariant states (see Sec. [3.3]).

e shiftOccFun MATLAB  function handle to a system  specific function
shiftOccupancySet that describes how to translate the occupancy
set under consideration of invariant states (see Sec. B.3)).

When an object of class maneuverAutomaton is constructed, it is automatically determined
which motion primitives can be connected to each other. The resulting connectivity matrix is
then stored in the property .conMat of the class maneuverAutomaton. T'wo motion primitives
can be connected to each other if the final reachable set of the first motion primitive is a subset
of the initial set of the second motion primitive. Since of course a maneuver automaton with
many connections is desirable, it is important that the motion primitive based control algorithms
described in Sec. 2.1] are able to contract the reachable set to ensure high connectivity.
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3.2 Function postprocessing

Usually, the reachable set of the controlled system R, (t) (see [3])) as computed by the motion
primitive based control algorithms in Sec. 2.1] only describes the position of a certain reference
point. For the autonomous vehicle benchmark in Sec. the control algorithms for example
compute the reachable set of the center of mass. However, for online motion planning one also
has to consider the dimensions of the vehicle when testing for collisions with static and dynamic
obstacles (see Fig.[§)). We call the reachable set bloated by the vehicle dimensions the occupancy
set O(t) of the system since this set describes the space that is occupied by the vehicle. As an
example we consider the occupancy set for the autonomous vehicle benchmark in Sec. 4.5l which

is
| [z3 4 cos(z2)d1 — sin(x2)ds bl L wow
o(t) = { [m + sin(x2)d1 + cos(z2)dy T € Ruc(y(t), 01 € 2’21’ 02 € 221’
where [ € RT is the length and w € RT the width of the vehicle. Note that the occupancy set
usually does not have the same dimension as the reachable set.

In order to construct a maneuver automaton from motion primitives one has to provide a system
specific function postprocessing which computes the occupancy set O(t) from the reachable
set Ryc()(t) as an additional input argument Post for controller synthesis (see Sec. 2.1). This
function is then used internally to automatically compute the occupancy set from the reachable
set. The syntax for the function postprocessing is as follows:

O(t) = postprocessing(R,.(.(t)),

where the occupancy set O(t) and the reachable set R,..)(t) are both represented as MATLAB
cell-arrays with each entry being a struct with fields .set and .time, which store the set and the
corresponding time interval, respectively. An example for the system specific implementation
of the postprocessing function for the autonomous car benchmark in Sec. can be found in
the file /benchmarks/automaton/postprocessing-car.m in the AROC toolbox.

3.3 Function shiftInitSet

Many systems have invariant states. The autonomous car benchmark in Sec. for example is
translation invariant as well as rotation invariant, so that the only state that is not invariant is
the velocity of the car. Invariant states are very advantageous for the construction of maneuver
automata since they allow to shift motion primitives to different positions (see Fig. [§)), which
significantly reduces the number of motion primitives that are required to solve motion planning
problems.

In AROC, the invariance of the system is defined by a system specific function shiftInitSet
which returns the set Rp; ¢ resulting from the translation of a set of initial states Rg C R™ to
the final state xy € R™ while considering the invariant states:

Rshift = shiftInitSet(Ro,xy).

A MATLAB function handle to the system specific implementation of the function shiftInitSet
has to be provided for the construction of a maneuver automaton (see Sec. B.).

As an example we consider the implementation of the function shiftInitSet for the autonomous

vehicle benchmark in Sec.
—1

0 1 0 0 0 10 0 0 0

aga| o1 0 0 01 0 0 e
Rehige = Ty Tlo o cos(xfo) —sin(zge)| [0 0 cos(ca) —sin(ey) Ro es| |’

Tfa 0 0 sin(zya) cos(zys) 0 0 sin(c2) cos(cz2) 4
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where ¢ = center(Ry) is the center of the initial set. The velocity, which is state x; is not
changed since it is not an invariant state. However, the orientation x9 and the positions x3 and
x4 are updated to the orientation and positions of the final states due to the translation and
rotation invariance of the system. Furthermore, the positions x3 and x4 are rotated due to the
change in orientation. The function shiftInitSet for the autonomous vehicle benchmark is
implemented in the file /benchmarks/automaton/shiftInitSet_car.m in the AROC toolbox.

3.4 Function shiftOccupancySet

As described in Sec. [3.3] invariant states of the system allow us to shift motion primitives to
different positions. When doing so, we of course also have to update the occupancy set O(t) (see
Sec. [B2)) for these motion primitives. In AROC, the rules for updating the occupancy set can be
specified with a system specific function shiftOccupancySet which returns the new occupancy
set after shifting the motion primitive to the new initial state g € R™ at time t € R™:

Ognift(t) = shiftOccupancySet(O(t), zo, 1),

where O(t) is the original occupancy set of the motion primitive. A MATLAB function handle
to the system specific implementation of the function shiftOccupancySet has to be provided
for the construction of a maneuver automaton (see Sec. 3.1]).

As an example we consider the implementation of the function shiftOccupancySet for the
autonomous vehicle benchmark in Sec.

Ounie(t) = [%,3} n [COS(xo,z) —sin(zo,2) o),

04 sin(zg2)  cos(zo2)

where we assume without loss of generality that the initial orientation and positions of the
motion primitive are equal to 0. The function shiftOccupancySet for the autonomous vehicle
benchmark is implemented in the file /benchmarks/automaton/shiftOccupancySet_car.m in the

AROC toolbox.

3.5 Motion Planner

Given an offline constructed maneuver automaton, motion planning is reduced to the task of
solving a classical search problem (see Fig. B, which can be implemented very efficiently and
is therefore well suited for online control. In AROC, online motion planning with a maneuver
automaton is implemented in the function motionPlanner:

ind = motionPlanner(obj, xg, goalSet, statObs, dyn0Obs, search),

where ind is a vector that stores the indices of the motion primitives that correspond to the
planned trajectory, and the input arguments are defined as

e obj object of class maneuverAutomaton that represents the maneuver automa-
ton that is used for online planning.

eI Inital state g € R™ for the motion planning problem.

e goalSet target set which should be reached by the system specified as a stuct with
fields .set and .time which specify the target set and the corresponding
time interval, respectively.

e statObs MATLAB cell-array storing the static obstacles for the motion planning
problem.
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e dynObs  MATLAB cell-array storing the dynamic obstacles for the motion planning
problem, where each entry of the cell-array is a struct with fields .set
and .time which store the set and the corresponding time interval of the
dynamic obstacles.

e search  string specifying the search algorithm that is used to solve the mo-
tion planning problem. The available algorithms are depth-first search
(’depth-first’), breadth-first search (’breadth-first’), and A* search
(’Astar’).

The sets for goal set, static obstacles, and dynamic obstacles can be represented by any of the
set representations from the CORA toolbox [7, Sec. 2.2.1]. For the autonomous car bench-
mark in Sec. the parameter xg, goalSet, statObs, and dynObs which define the mo-
tion planning problem can be conveniently loaded from CommonRoad files using the function
commonroad2cora (see Sec. [LL6). Code examples that demonstrate the construction of a ma-
neuver automaton as well as online planning using the function motionPlanner are provided in
Sec. and in the directory /ezamples/maneuverAutomaton/... in the AROC toolbox.

20



4 BENCHMARKS

4 Benchmarks

In this section we provide a short description for all benchmark systems contained in the AROC
toolbox. New custom benchmarks can be easily added as described in Sec. 5.l The code for all
benchmarks is contained in the directory /benchmarks/.. in the AROC toolbox.

4.1 Double Integrator

The first benchmark system is a simple double integrator that describes a point-mass sliding
frictionless on a plane (see Fig. [@). Despite its simplicity, the system is often very useful for
testing control algorithms.

m
F X
- @ —

NNNNNNNNNN

Figure 9: Visualization of the double integrator benchmark system.

The system dynamics for the double integrator is as follows:
1"1 = I9

To = —u + w,
m
where the system states are the position z; = x and the velocity zo = & of the point-mass,
the system input is the force u = F, and the weight of the point-mass is m = 1lkg. The
input constraint is u € [—9.81,9.81]N and the set of disturbances is w € [—0.05,0.05]m/s?.
Furthermore, we consider the initial set z1(0) € [—0.2,0.2]m and z2(0) € [—0.2,0.2]m/s.

The differential equation describing the double integrator is implemented in the file /bench-
marks/dynamics/doubleIntegrator.m, and the parameters for the system are specified in the file
/benchmarks/parameter/param_doubleIntegrator.m. The name of the benchmark is benchmark
= ’doubleIntegrator’.

4.2 Cart

The second benchmark describes a cart that is coupled to the environment with a damping
element and a spring with nonlinear stiffness (see Fig. [10).

m

r F
—>

Figure 10: Visualization of the cart benchmark system.
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The system dynamics for the cart benchmark is as follows:

T1 = T2 +wq

. 1
xgza(—d-xg—k-x‘%—}—u)%—wg,

where the system states are the position 1 = x and the velocity x9 = & of the cart, the system
input is the force u = F', the weight of the cart is m = 1kg, the damping constant is d = 1kg/m,
and the spring stiffness constant is k = 1N/m?2. The input constraint is u € [~14,14]N and the
set of disturbances is wy € [~0.1,0.1Jm/s and wy € [—0.1,0.1}m/s?. Furthermore, we consider
the initial set z1(0) € [—0.2,0.2]m and x2(0) € [—0.2,0.2]m/s.

The differential equation describing the cart benchmark is implemented in the file /benchmark-
s/dynamics/cart.m, and the parameters for the system are specified in the file /benchmarks/pa-
rameter/param_cart.m. The name of the benchmark is benchmark = ’cart’.

4.3 Stirred Tank Reactor

The next benchmark is taken from [I3] Sec. 5] and considers an exothermic, irreversible reaction
A — B of the reactant A to the product B inside a stirred tank reactor (see Fig. [IT]).

Figure 11: Visualization of the stirred tank reactor benchmark system.

The system dynamics for the stirred tank reactor is as follows [13, Eq. (15)]:

iy = 1+ (Cag = (@1 + CF) = ko - e P/ EEAT) (@ 4 OF) 4wy
. q AH B cq .
=2 (T, — TeqY) — . /(R(z2+T*7)) | q
ty = 37 (Ty = (@2 + 1)) p_Cpko e (z1+CY)
UA
78 Teq _ Teq
+V-p-Cp(u+ £ — (w2 + T°7)) + wo,

where the system states are the difference of the concentration of reactant A from the equilibrium
point z; = C4 — C%! and the difference of the reactor temperature from the equilibrium point
xo =T —T°, and the system input is the difference of the cooling stream temperature from the
equilibrium point u = T, — T¢?. The parameter are defined as C% = 0.5 mol/l, T*? = 350 K,
T:7 = 300 K, ¢ = 5/3 1/s, Ty = 350 K, V. = 100 I, p = 1000 g/l, C, = 0.239 J/g K,
AH = —5-10* J/mol, E/R = 8750 K, kg = 7.2/60 - 10** s71, UA = 1/12-10* J/s K. The
input constraint is u € [~20,70]K and the set of disturbances is w; € [—0.1,0.1)mol/l s~1
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and wy € [—2,2]K/s. Furthermore, we consider the initial set 1(0) € [—0.17, —0.13]mol/l and
22(0) € [—48, —43]K.

The differential equation describing the stirred tank reactor is implemented in the file /bench-
marks/dynamics/stirred TankReactor.m, and the parameters for the system are specified in
the file /benchmarks/parameter/param_stirred TankReactor.m. The name of the benchmark is
benchmark = ’stirredTankReactor’.

4.4 Artificial System

Now, we consider the artificial nonlinear system in [14, Sec. 5]. The system dynamics for the
artifical system is as follows [14, Eq. (19)]:

1 = —x1 + 229 + 0.5u

To = —3x1 + 4ao — 0.25333 —2u 4+ w.
The input constraint is u € [—2,2]1/min, and the set of disturbances is w € [—0.1,0.1]1/min.
Furthermore, we consider the initial set 1(0) € [0.5,0.7] and x5(0) € [—0.65, —0.55].

The differential equation describing the artificial system is implemented in the file /bench-
marks/dynamics/artificialSystem.m, and the parameters for the system are specified in the file
/benchmarks/parameter/param_artificialSystem.m. The name of the benchmark is benchmark
= ’artificialSystem’.

4.5 Car

One of the most often used benchmarks in AROC is the kinematic single-track model of an
autonomous car taken from [4, Sec. 6] (see Fig. I2]).

@Lx@(@ﬁ

Figure 12: Visualization of the autonomous car benchmark system.

The system dynamics for the autonomous car benchmark is as follows [4, Eq. (19)]:

&1 =u +w

T = Ug + Wo

T3 = x1 - cos(z2)

T4 = x71 - sin(zg),
where the system states are the velocity x1 = wv, the orientation xo = ¢, and the position
x3 = x, x4 = y of the car. The system inputs are the acceleleration w; and the normalized

steering angle uy. The input constraints are u; € [—9.81,9.81)m/s? and uy € [—~0.4,0.4]rad/s,
and the set of disturbances is w; € [~0.5,0.5)m/s? and wy € [—0.02,0.02]rad/s. Furthermore,
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we consider the initial set z1(0) € [19.8,20.2]m/s, 22(0) € [—0.02,0.02]rad, x3(0) € [-0.2,0.2]m
and x4(0) € [-0.2,0.2]m.

The differential equation describing the autonomous car benchmark is implemented in the file
/benchmarks/dynamics/car.m, and the parameters for the system are specified in the file /bench-
marks/parameter/param_car.m. The name of the benchmark is benchmark = ’car’.

4.6 Robot Arm

This benchmark describes a planar robot arm with two rotational joints (see Fig. [I3]).

Figure 13: Visualization of the robot arm benchmark system.

The system dynamics for the robot arm benchmark is as follows:

Ty = w3+ wp

To = Tq4 + Wo

i3 = (B0sy + 28%s9c0)x3 + 280501324 + 685227 + Ouy — (6 + 2Bc2)us + w3

iy = —(afsy + 28%s9c2)a] — (28859 + 4B%s9c2)x324 — (5832 + 287 s002) 7]
— (0 +2Bc2)ur + (a + 2Bc2)uz + wy,

where the system states are the angles x1 = 61 and xzo = 65 and the angular velocities x3 = 91
and x4 = 6?2 of the first and the second joint. The system inputs are the joint torques u; = 71
and us = 79. Furthermore, we use the shorthands ¢; = cos(61), s1 = sin(6z), ca = cos(fa),
so = sin(6a), a = myr} + mald + mord + L1 + Lo, B = malira, and § = mar3 + I, 5. The
parameter values are mi = lkg, mg = lkg, r1 = 0.1m, ro = 0.1m, I = 0.2m, Iy = 0.2m,
I.1 =1kg m?, and I.i=1kg m?, where I.1, I, is the intertia of the two links. The
input constraints are u; € [—3,3]Nm and us € [—1,1]Nm, and the set of disturbances is
wy,we € [—0.01,0.01]rad/s and ws,wy € [-0.01,0.01]rad/s?. Furthermore, we consider the
initial set x1(0),z2(0) € [—0.05,0.05]rad and x3(0),z4(0) € [—0.05,0.05]rad/s.

The differential equation describing the robot arm is implemented in the file /benchmarks/dy-
namics/robotArm.m, and the parameters for the system are specified in the file /benchmarks/-
parameter/param_robotArm.m. The name of the benchmark is benchmark = ’robotArm’.
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4.7 Mobile Robot

Next, we consider the model of a Pioneer 3DX mobile robot (see Fig. [[4]), which is taken
from [15].

T

X

Figure 14: Visualization of the Pioneer 3DX mobile robot.
The system dynamics for the mobile robot benchmark is as follows [15] Sec. 2.1]:
) r
T = 5(3:4 + x5) cos(x3)
. r .
Ty = 5(3:4 + x5) sin(x3)

. r
r3 — E(.%'4 - 1‘5)

Ty = ﬁ(/lul — AKxy — Buy + BKx5) + wy
T = ﬁ(—Bul + BKx4+ Aug — AKx5) + wo,
where mr? (I +md?)r? mr? (I +md?)r?
A=t e BErpm e

The system states are the posision 1 = x, £9 = y and the orientation 3 = ¢ of the mobile robot,
as well as the angular velocities x4 = g, x5 = 0, of the right and the left actuated wheel. The
system inputs are the torques u; = 7g and us = 77, acting on the two actuated wheels. According
to [I5] Tab. 1] and [I5, Tab. 2], the mass of the mobile robot is m = 28.05kg, the radius of the
wheels is r = 0.095m, and the additional parameter are defined as b = 0.32m, d = 0.0578m,
I = 17.5kgm?, Iy = 9.24 - 10~ %kgm?, and K = 35-10""Nms/rad. The input constraints are
up,uz € [—0.5,0.5]Nm, and the set of disturbances is w1, ws € [—0.001,0.001]rad/s?.

The differential equation describing the mobile robot is implemented in the file /benchmarks/dy-
namics/mobileRobot.m, and the parameters for the system are specified in the file /benchmarks/-
parameter/param_mobileRobot.m. The name of the benchmark is benchmark = ’mobileRobot’.
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4.8 Platoon

The last benchmark describes a vehicle platoon with N = 4 vehicles (see [3, Sec. IV]). This
benchmark can easily be extended to higher dimensions by increasing the number of vehicles N.

P1 P2 P3

AN N —

20 20 ‘o0

Figure 15: Visualization of a platoon with N = 3 vehicles.

The system dynamics for the platoon benchmark is as follows [3, Sec. IV]:

T1 = T2 To = up + wy

T3 = T4 T4 = U] —ug + w; — wa
T5 = T Te = Uy — U3z + Wy — W3
T7 = s T4 = uz — ug + w3 — wy,

where the system states are the position x1 = p; and velocity o = pso of the first vehicle, and
the relative positions x3 = p1 — p2 — cs, Ts = po — p3 — Cs, T3 = P1 — P2 — Cs and relative velocities
Ty = U1 — Vg, Tg = V3 — V3, Tg = v3 — V4 between the remaining vehicles, where ¢, € RT is
the minimal safe distance. The system inputs are the accelerations ui, us, ug and wuy of the
four vehicles. The input constraints are wy,ua,u3,us € [—10,10]m/s2, the set of disturbances
is wy,wo, w3, wy € [—1,1]m/s?, and the state constraints are x3,x5,77 > 0. Furthermore,
we consider the initial set z1(0) € [—0.2,0.2]m, x2(0) € [19.8,20.2]m/s, x3(0),x5(0),z7(0) €
[0.8,1.2]m, and 24(0), z6(0),25(0) € [—0.2,0.2]m/s.

The differential equation describing the platoon benchmark is implemented in the file /bench-
marks/dynamics/platoon.m, and the parameters for the system are specified in the file /bench-
marks/parameter/param_platoon.m. The name of the benchmark is benchmark = ’platoon’.
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5 Additional Functionality

In this section we document some additional functionality of AROC that was not yet explained
in the previous sections.

5.1 Adding New Benchmark Systems

To add a new custom benchmark system to the AROC toolbox one has to create a MATLAB
function
f = benchmarkName(x, u, w)

which implements the nonlinear function f(x,u,w) from the differential equation & = f(x, u, w)
(see (I)) that describes the system dynamics, where x € R™ is the vector of system states,
u € R™ is the vector of system inputs, and w € RY is the vector of disturbances. The name
benchmarkName of the function can then be used to select the desired benchmark for the control
algorithms (see Sec.[2]). In general, it is sufficient if the function that implements the differential
equation is located somewhere on the MATLAB path. For the sake of clarity, however, we
recommend to store all functions that implement differential equations for benchmark system in
the directory /benchmarks/dynamics/.... Furthermore, we recommend to also store additional
benchmark parameters such as input constraints, initial set, etc., in a parameter file located in
the directory /benchmarks/parameter/....

As an example, we consider the autonomous car benchmark described in Sec. The MATLAB
function that implements the differential equation for this system is:

function f = car(x,u,w)
£(1,1) = u(l) + w(l);
£(2,1) = u(2) + w(2);
£(3,1) = cos(x(2))*x(1);
f(4,1) = sin(x(2))*x(1);

end

5.2 Class results

The class results stores the reachable set of the controlled system, simulated trajectories of the
controlled system, and the reference trajectory. All control algorithms return an object of class
result (see Sec. [2) which can be used to conveniently visualize and post-process the results
from controller synthesis and online application of the controller.

An object of class results can be constructed as follows:

obj = results(reachSet,reachSetTimePoint, refTraj),

obj = results(reachSet,reachSetTimePoint, refTraj, simulation),

where obj is an object of class results and the input arguments are defined as follows:

e reachSet object of class reachSet (see [7, Sec. 6.1]) storing the reach-
able set of the controlled system.

e reachSetTimePoint MATLAB cell-array storing the reachable set at the end of
each of the Opts.N time steps.

e refTraj matrix with n rows and Opts.N columns storing the refer-
ence trajectory.
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e simulation MATLAB cell-array storing the different simulated trajec-
tories, where each cell is a struct with fields .t, .x, and .u
that store the time, the simulated trajectory, and the control
inputs, respectively.

For visualization, the class results provides three function plotReach, plotReachTimePoint,
and plotSimulation which we now explain in detail.

5.2.1 Function plotReach

The function plotReach visualizes a two-dimensional projection of the reachable set for the
controlled system:

han = plotReach(obj),
(
(
(

han = plotReach(obj,dim, color, options),

han = plotReach(obj, dim),

han = plotReach(obj,dim, color),

where obj is an object of class results and han is a handle to the plotted MATLAB graphics
object that can for example be used to add a legend to the plot. The additional input arguments
are defined as follows:

e dim integer vector dim € N2<n specifying the dimensions for which the projection
is visualized. The default value is dim = [1,2].

e color color of the plotted set. The color can either be specified as a string with line
specifications supported by MATLAB@, e.g., ’r’, or as a 3-dimensional vector
containing the normalized RGB values for the color, e.g., [1,0,0].

e options additional MATLAB plot speciﬁcationaﬁ passed as name-value pairs, e.g.,
’LineWidth’. The CORA toolbox defines some additional properties (see [7,
Sec. 6.1.3]), e.g., ’Order’, which are also supported.

Code examples that demonstrate how to use the function plotReach are provided in Sec. [l and
in the directory /ezamples/... in the AROC toolbox.

5.2.2 Function plotReachTimePoint

The function plotReachTimePoint visualizes a two-dimensional projection of the time point
reachable set for the controlled system at the end of each of the Opts.N time steps:

han = plotReachTimePoint(obj),
(
(
(

han = plotReachTimePoint(obj,dim, color, options),

han = plotReachTimePoint(obj,dim),

han = plotReachTimePoint(obj,dim, color),

®https://www.mathworks.com/help/matlab/ref/linespec.html
3https://www.mathworks.com/help/matlab/ref/matlab.graphics.primitive.patch-properties.html
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where the input and output arguments are defined as in Sec. 52,11 Code examples that demon-
strate how to use the function plotReachTimePoint are provided in Sec. [f] and in the directory

/examples/... in the AROC toolbox.

5.2.3 Function plotSimulation

The function plotSimulation visualizes a two-dimensional projection of all simulated trajecto-
ries:

han = plotSimulation(obj),

han = plotSimulation(obj,dim),

han = plotSimulation(obj,dim, color),

han = plotSimulation(obj,dim, color, options),

where the input and output arguments are defined as in Sec. 52,11 Code examples that demon-
strate how to use the function plotSimulation are provided in Sec. [f] and in the directory

/examples/... in the AROC toolbox.

5.3 Class objController

As described in Sec. [L.3] the class objController is the parent class for the three classes
objOptBasedContr, objConvInterpContr, and objGenSpaceContr, which belong to the mo-
tion primitive based control algorithms (see Sec. 2I]) and store the constructed control law
for one motion primitive. The class objController defines certain properties which store
all information required to construct a maneuver automaton from a list of motion primitives
with controllers represented as objects of class objController (see Sec. B]). Since the classes
objOptBasedContr, objConvInterpContr, and objGenSpaceContr inherit these properties, it is
possible to construct a maneuver automaton using any of the motion primitive based controllers
from Sec. [ZJl In addition, the class objController provides the two functions simulate (see
Sec. 6.3.0)) and simulateRandom (see Sec. [£.3.2]), which simulate the online application of the
constructed controller.

An object of class objController can be constructed as follows:

obj = objController(dyn,Rfin, Param),
obj = objController(dyn,Rfin, Param, occSet),

where obj is an object of class objController and the input arguments are defined as follows:

e dyn MATLAB function handle to the function f(z,u,w) in ({l) describing the dy-
namics of the open-loop system.

e Rfin final reachable set R,(.)(tf) at the end of the motion primitive represented
by any of the set representations from the CORA toolbox (see [7, Sec. 2.2.1]).

e Param  struct containing the parameter that define the control problem (see Sec. [2.]).

e occSet occupancy set (see Sec.[B]) stored as a MATLAB cell-array, where each cell is
a struct with fields .set and .time, which store the occupancy set and the
corresponding time interval, respectively. Only required if the resulting object
of class objController is used to construct a maneuver automaton.
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5.3.1 Function simulate

The function simulate simulates the closed-loop system for an initial point zg € Rg and a
specific disturbance signal w(t) € W:

[res, t,x,u] = simulate(obj, res, zq, w(t)),

where obj is an object of any class that is a child of class objController, res is an object
of class results (see Sec. 5.2), and t € RM, x € RMX" and u € RM*™ store the time, the
states, and the inputs of the simulated trajectory, respectively, with M € N* being the number
of simultation time steps. For the disturbance signal w(t) we consider piecewise constant signals
with D € Nt segments, so that w(t) is specified as a matrix w(t) € R,

5.3.2 Function simulateRandom

The function simulateRandom simulates the closed-loop system for £ € NT randomly selected
initial points z¢g € R and randomly selected input signals w(t):

[res, t,x,u] = simulateRandom(obj, res, E, fracVert, fracDistVert, D),

where obj is an object of any class that is a child of class objController, res is an object of
class results (see Sec.[5.2), fracVert € [0, 1] is the fraction of initial points drawn randomly
from the vertices of the initial set Ry, fracDistVert € [0,1] is the fraction of disturbance
values drawn randomly from the vertices of the disturbance set W, and D € N is the number
of segments for the piecewise constant disturbance signals w(t) (see Sec. 5.3.J]). Code examples
that demonstrate how to use the function simulateRandom are provided in Sec. [6]l and in the
directory /examples/... in the AROC toolbox.

5.4 Reference Trajectory

For motion primitive based controllers (see Sec. 2I) the reference trajectory can either be
provided by the user, or it is automatically computed by solving an optimal control problem
that aims to bring the system as close as possible to the desired goal state. In AROC, we
consider reference trajectories that correspond to piecewise constant reference inputs, where the
number of piecewise constant segments is identical to the number of time steps Opts.N for the
controller (see Fig. [I0]).

A ZC
. L0 U
i : \
= \ A
€ N 4 T xX !
8 ~. .1__-» ~..~2~ ZESI
- N~->’/

Time

Figure 16: Illustration of a reference trajectory (right) that corresponds to a piecewise constant
input signal (left) with Opts.N = 4 time steps.
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A custom reference trajectory can be provided using the following settings for Opts.refTraj

(see Sec. 2)):

— .x matrix storing the states of the reference trajectory. The number of rows of the
matrix has to be equal to the number of system states n, and the number of columns
has to be equal to the number of time steps Opts.N plus one since the initial state
has to be included. The final state has to be equal to Params.xf, and the initial
state has to be equal to the center of Params.RO (see Sec. [2).

— .u matrix storing the inputs that correspond to the reference trajectory. The number
of rows of the matrix has to be equal to the number of system inputs m, and the
number of columns has to be equal to the number of time steps Opts.N. The input
is constant during the period of one time step, and all inputs have to satisfy the
input constraints.

If no custom reference trajectory is provided the reference trajectory is determined automatically
by solving an optimal control problem (see (Bl)). To improve the result, one can provide custom
weighting matrices @@ and R by using the following settings for Opts.refTraj (see Sec. 2)):

— .Q state weighting matrix @ € R™*™ for the cost function of the optimal control in ([l).
The default value is the identity matrix.

— .R input weighting matrix R € R™*™ for the cost function of the optimal control in
[Bl). The default value is an all-zero matrix.

5.5 Extended Optimization Horizon

The convex interpolation control algorithm (see Sec. 2I.2) and the generator space control
algorithm (see Sec. ZI.3]) are based on optimal control problems (see (H)). In the classical
set-up the objective for the optimal control problems is to drive the system states as close as
possible to the next point of the reference trajectory (see Fig. [T (top)). However, this can
often be suboptimal since for many systems a certain deviation of some system states from
the reference trajectory is required in order to reduce the deviations in other system states.
For an autonomous car for example (see Sec. 1)), a certain deviation in the orientation is
required in order to reduce the deviation in the position. One way to solve this problem is to
use an extended optimization horizon, where the optimal control problem is solved for multiple
reference trajectory time steps, but only the control inputs for the first time step are applied to
the system (see Fig. [T (bottom)).

The optimal control problem with an extended optimization horizon is defined as follows:
. M . T tm T
min (Z w(z) ’ ('I(tl) - xref(ti)) Q- ('I(tl) - xref@i))) +/ u(t) R u(t) dt
t

u(t) ) =0

9)
st @(t) = f(z(t), u(t),0),

where z,.f(t) is the reference trajectory, w : NT — R7 is a weighting function, t; = i t;/N,
M € Ni y is the length of the extended optimization horizon, and N € N* is the number of
reference trajectory time steps.
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Figure 17: Tllustration of the convex interpolation control algorithm with (bottom) and without
(top) extended optimization horizon.

The settings for an extended optimization horizon are provided with the struct Opts.extHorizon:

— .active flag specifying if an extended optimization horizon is used
(Opts.extHorizon.active = 1) or not (Opts.extHorizon.active =
0). The default value is 0.

— .horizon length of the extended optimization horizon M &€ N‘<L y in reference trajectory
time steps (see ().

— .decay string specifying the type of weighting function w(-) (see ([@)) that is used. The
available types are ’uniform’, ’end’, ’fall’, ’fall+End’, falllinear’,
’falllinear+End’, ’fallEqDiff’, ’fallEqDiff+End’, ’rise’, ’quad’,
’riseLinear’, and ’riseEqDiff’ (see (I0) and Fig. [I8)).

The different types of weighting functions are defined as follows:

’uniform’ : w(i) =1
, 1, i=M
’end’ : w(i) = )
0, otherwise
1
’fall’ : w(i) = =
i
1
‘rise’ : w()_M—i—l—z

: i = #E [ +1
’quad’ : w(i) = . (10)
maxj—q1, vyl — H5H]2 + 1

1— L
’fallLinear’ : w(i) =1-(—1)5; —M1
1
=M
S eG)

>fallEqDiff’ : w(i) =

otherwise
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For the weigthing functions >fall+End’, falllinear+End’, and >fallEqDiff+End’ the last
weight is equal to one (w(M) = 1). The weighting functions ’riseLinear’ and ’riseEqDiff’
are defined as the weighting functions ’fallLinear’ and ’fallEqDiff’, but with increasing
weights.

1 —— niform = 1 s 3]
{3 — —faIILinegr
0.8 quad l 08l [ fallEQDiff | |
— rise '
! I
06" | ] 2 06F —
0.4 1 0.4+ C—
| I
0.2} T 1 o2} T —
_—__ N e ‘_—__
0 : 0
2 4 6 8 10 2 4 6 8 10
? 1

Figure 18: Visualization of the different types of weighting functions.

5.6 Reachability Settings

AROC uses the CORA toolbox [I] to compute reachable sets. The reachabiliy algorithms im-
plemented in CORA require some user-defined settings like, e.g., maximum zonotope order,
maximum tensor order, etc. [7]. In AROC, the settings for reachability analysis using CORA
are provided with the struct Opts.cora, which has the following fields:

— .alg string specifying the reachability algorithm for nonlinear sys-
tems. The available algorithms are conservative linearization
(*1in’) and conservative polynomialization (’poly’) (see [7
Sec. 4.2.5.1]).

— .1linAlg string specifying the reachability algorithm for nonlinear sys-
tems. The available algorithms are ’standard’, ’>fromStart’,
’wrapping-free’, and ’adap’. For optimization based control
in combination with linear systems only (see [7), Sec. 4.2.1.1]).

— .tensorOrder order k € {2,3} of the Taylor series expansion that is used to
obtain an abstraction of the nonlinear system dynamics. (see [7|
Sec. 4.2.5.1])

— .taylorTerms number of Taylor series terms used to obtain an enclosure of the

exponential matrix e4? (see [7, Sec. 4.2.1.1] and [7} Sec. 4.2.5.1]).

— .zonotopeOrder upper bound for the zonotope order of the zonotopes that repre-
sent the reachable set (see [7, Sec. 4.2.1.1] and [7), Sec. 4.2.5.1]).

— .intermediateOrder upper bound for the zonotope order during internal com-
putations. For Opts.cora.tensorOrder = 3 only (see [7|

Sec. 4.2.5.1]).

— .errorQOrder upper bound for the zonotope order before the abstraction error
is computed. For Opts.cora.tensorOrder = 3 only (see [7,
Sec. 4.2.5.1]).

33



5 ADDITIONAL FUNCTIONALITY

— .error upper bound for the Hausdorff-distance between the exact
reachable set and the computed over-approximation. For
Opts.cora.linAlg = ’adap’ only (see [7, Sec. 4.2.1.1]).

If no reachability settings are specified, the default values listed in Tab. [[3] are used.

Table 13: Default reachability settings for optimization based control (OBC), convex inter-
polation control (CIC), generator space control (GSC), and reachset model predictive control
(MPC).

o
5]
!
S
4 O
o o
4 w o TP
[ORN= H © ~
o) ~ o o (]
S o o © T
o B 2 0 &
80 5 & o 8 O
—~ © o £ 4 . .
< w 4 o © o o
a0 g g > g8 £ & S
—~ - ¢ @ © d N 5
© — P £ N A 0 ©
OBC (linear systems) - ’standard’ - 10 50 30 5 see [7]
OBC (nonlinear systems) ’lin’ - 2 10 50 30 5 -
CIC (linear controller) ’lin’ - 2 20 100 50 5 -
CIC (exact + quad. contr.) ’poly’ - 3 20 100 50 30 -
GSC ’1lin’ - 2 20 30 20 5 -
MPC ’1in’ - 2 10 5 3 3 -
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6 Examples

In this section we provide some code examples that demonstrate how to apply the control
algorithms implemented in AROC. All code examples presented in this section as well as many

additional examples can found in the directory /ezamples/... in the AROC toolbox.

6.1 Example Optimization Based Control

In this section we present a code example that demonstrates how to construct a feasible con-
troller for the turn-right maneuver of the autonomous car benchmark (see Sec. [4.5]) described
in [4, Sec. 6] with the optimization based control algorithm (see Sec. 2ZI1]). The generated plot
is shown in Fig. [[9 and the code for the example is implemented in the file /ezamples/opti-

mizationBasedControl/example_optBasedContr_car.m in the AROC toolbox.

0.05
or ] <2
L N~ Y~z
005 ¥ — N— 2
= “\—T: N 77 A\ —_—
S L A NN N 4 AR X
& -041 \r\ s3 )\ *@\ ) 72
° — Ay
-0.15 ¢ — \%‘E "'A?A
-0.2+1
-0.25 : : : ‘ ‘
19.7 19.8 19.9 20 20.1 20.2 20.3
v [m/s]

Figure 19: Plot generated by the optimization based control code example in Sec. [6.]] where the
reachable set (gray) as well as simulated trajectories (black) of the controlled system are shown

for different dimensions.

o

% initial set

x0 = [20;0;0;071;

width = [0.2; 0.02; 0.2; 0.2];

Param.RO = interval (xO-width, x0O+width);
% goal state and final time
[20; -0.2; 19.87;
Param.tFinal = 1;

Param.xf = -1.99];

o

% set of admissible control inputs
width = [9.81;0.4];
Param.U = interval (-width,width);

o

% set of uncertain disturbances
width = [0.5;0.02];
Param.W = interval (-width,width) ;

% Algorithm Settings

% number of time steps
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Opts.N = 10;

% number of reachability analysis time steps
Opts.reachSteps = 12;
Opts.reachStepsFin = 100;

% parameters for optimization

Opts.maxIter = 10;

Opts.bound = 10000;

% weighting matrices for reference trajectory
Opts.refTraj.Q = 10xeye (4);

Opts.refTraj.R = 1/10xeye (2);

% Control Algorithm -———--------"--"""""""""""""""""""""

% construct controller for motion primitive
[objContr, res] = optimizationBasedControl ('car’,Param,Opts);

% simulation
res = simulateRandom (objContr,res,10,0.5,0.6,2);

% Visualization —————————————————— -
% visualization (velocity and orientation)

figure; hold on; box on;

plotReach(res, [1,2],[.7 .7 .71);

plotReachTimePoint (res, [1,2],'b");

plot (Param.RO, [1,2],"'w’,’Filled’,true);

plotSimulation(res, [1,2],"k");

xlabel (‘v [m/s]’); ylabel (’\phi [rad]’);

% visualization (position)

figure; hold on; box onj;
plotReach (res, [3,4],[.7 .7 .7]1);
plotReachTimePoint (res, [3,4],'b");

plot (Param.RO, [3,4], 'w’,’Filled’,true);
plotSimulation(res, [3,4]1,"k");

xlabel ("x [m]’); ylabel('y [m]’);

6.2 Example Convex Interpolation Control

In this section we present a code example that demonstrates how to construct a feasible controller
for the acceleration maneuver of the platoon benchmark (see Sec. 48] described in [3, Sec. IV]
with the convex interpolation control algorithm (see Sec. 2.1.2)). The generated plot is shown in
Fig. 20l and the code for the example is implemented in the file /examples/convexInterpolation-
Control/example_convInterContr_platoon.m in the AROC toolbox.

o

% Benchmark Parameter -—————--—------"-""""""""""""""""""""" " ——
% initial set

x0 = [0; 20; 1; 0; 1; 0; 1; 01,

width = [0.2; 0.2; 0.2; 0.2; 0.2; 0.2; 0.2; 0.2];

Param.R0O = interval (x0-width, x0+width) ;

% goal state and final time

Param.xf = [21; 22; 1; 0; 1; 0; 1; 01;

Param.tFinal = 1;

36



6 EXAMPLES

22.5 T T T T

15

20

25

T[]

z6[ "]

20.2

20

19.8

0.2

-0.2

-02 0 0.2

x1[m)]

0.8

1
x5[m)

1.2

0.2

-0.2

08 1
z3[m]

1.2

0.8 1
x7[m)

1.2

Figure 20: Plot generated by the convex interpolation control code example in Sec. The
reachable set (gray) as well as simulated trajectories (black) of the controlled system are shown
on the left side, and projections of the shifted final reachable set (blue) and the initial set (red)

are visualized on the right side.

% set of admissible control inputs
width = [10;10;10;107;
Param.U = interval (-width,width);
% set of uncertain disturbances
width = [1;1;1;1];
Param.W = interval (-width,width);
% set of state constraints
A = [Or Or _lr Or OI OI Or O;

o, o, 0, 0, -1, 0, 0, 0O;

OI OI Or Or OI OI 71/ O];
b = [0; 0; 01;
Param.X = mptPolytope (A,Db);

o

% Algorithm Settings

% number of time steps
Opts.N = 25;
Opts.Ninter = 1;

o

Opts.Q = diag([20, 1, 27, 1, 28,

Opts.R = zeros(4);

% additional settings
Opts.reachSteps = 5;
Opts.parallel = 1;

% Control Algorithm

1,

28,

11);

construct controller for motion primitive

[objContr, res] =

% simulation

37

% weighting matrices for optimal control problems

convexInterpolationControl ("platoon’,Param,Opts);



6 EXAMPLES

res = simulateRandom (objContr,res,10,0.5,0.6,2);

o

% Visualization - -
% compute shifted final reachable set

Rshift = res.reachSetTimePoint{end};

Rshift = zonotope([center (Param.R0O),generators(Rshift)]);

% visualization (reachable set projecton onto x_1l-x_2-plane)
figure; hold on; box on;

plotReach(res, [1,2],[.7 .7 .7]1);
plotReachTimePoint (res, [1,2],'b");

plot (Param.RO, [1,2], 'w’,’Filled’,true);

plotSimulation(res, [1,2],"k");

xlabel ("x_1 [m]");

ylabel ("x_2 [m/s]’);

% visualization (shifted final reachble set)

figure;

dims = {[1,2],13,41,[5,6]1,17,81};

for 1 = 1l:length(dims)
subplot (2,2,1); hold on; box on; dim = dims{i};
plot (Param.RO,dim, ' r");
plot (Rshift,dim,’ b’");
xlabel (['x_",num2str (dim(1)),” [m]’]);
ylabel ([’x_",num2str (dim(2)),” [m/s]’1);

if 1 ==

x1im([-0.3,0.3]); ylim([19.7,20.3]);
else

x1im([0.7,1.3]); ylim([-0.3,0.3]);
end

end

6.3 Example Generator Space Control

In this section we present a code example that demonstrates the effect of an extended optimiza-
tion horizon (see Sec. [B.5]) for the generator space control algorithm from Sec. on the cart
benchmark system in Sec. The generated plot is shown in Fig. 21l and the code for the exam-
ple is implemented in the file /examples/generatorSpace Control/example-genSpace Contr_cart.m
in the AROC toolbox.

% Benchmark Parameter -—————-———-"—-—-"—-""—"""""""""""""—"—"—"——(—(—(—(—(—(——————————————
% initial set

x0 = [0;0];

width = [0.2; 0.2];

Param.RO = interval (xO-width, x0O+width);

% goal state and final time

Param.xf = [2;0];

Param.tFinal = 1;

% set of admissible control inputs
Param.U = interval (-14,14);

% set of uncertain disturbances

width = [0.1;0.1];
Param.W = interval (-width,width);
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Figure 21: Plot generated by the generator space control code example in Sec. [6.3] where the
reachable set of the controlled system without an extended optimization is shown on the left
side, and the reachable set with an extended optimization horizon on the right side.

o

% Algorithm Settings ————-----""-"""""--———
% number of time steps

Opts.N = 10;

Opts.Ninter = 4;

% weighting matrices for optimal control problems

Opts.Q = diag([2,1]1);

Opts.R = 0;

% weigthing matrice for the reference trajectory

Opts.refTraj.Q diag([25,25]);

Opts.refTraj.R = 0.0051;

% Control Algorithm —-————"---""""""""""“"-""—"“"—"—"—~"—~—~—(—(—(

% construct controller (without extended horizon)
[objContr, res] = generatorSpaceControl ('cart’,Param,Opts);
% construct controller (with extended horizon)
Opts.extHorizon.active = 1;

Opts.extHorizon.horizon = 4;

Opts.extHorizon.decay = ’'riselinear’;

[objContrEx, resEx] = generatorSpaceControl (' cart’,Param,Opts);
% simulation

res = simulateRandom(objContr,res,10,0.5,0.6,2);

resEx = simulateRandom(objContrEx, reskx,10,0.5,0.6,2);

% Visualization - -----—-—-—-—-—+"-——+-"H—--—--"-—--"-"-"-""-""""""" """
% visualization (without extended horizon)

figure; hold on; box on

plotReach(res, [1,2],[.7 .7 .7]1);

plotReachTimePoint (res, [1,2],'b");
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plot (Param.RO, [1,2],"'w’,’Filled’,true);
plotSimulation(res, [1,2],"k");

xlabel ("x [m]’);

ylabel (‘v [m/s]’);

% visualization (with extended horizon)
figure; hold on; box on

plotReach (reskEx, [1,2],[.7 .7 .71);
plotReachTimePoint (reskx, [1,2]," r");
plot (Param.RO, [1,2],’'w’,’Filled’,true);
plotSimulation (resEx, [1,2],"k");

xlabel ("x [m]’);

ylabel (‘v [m/s]’);

6.4 Example Reachset Model Predictive Control

In this section we present a code example that demonstrates the reachset model predictive control
algorithm (see Sec.[2.2]) on the stirred tank reactor benchmark in Sec. 4.3l for the same initial set
as considered in [2, Sec. IV]. The generated plot is shown in Fig.22] and the code for the example
is implemented in the file /ezamples/reachsetMPC/example_reachsetMPC_stirred TankReactor2.m

in the AROC toolbox.
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Figure 22: Plot generated by the reachset model predictive control code example in Sec.
The terminal region is visualized in green, the reachable set in gray, and the resulting trajectory

of the controlled system in red.

o

% initial set

x0 = [-0.3;-301;

Param.RO = interval (x0);

% goal state

Param.xf = [0;0];

% set of admissible control inputs
Param.U = interval (-20,70);

% set of uncertain disturbances
width = [0.1;2];

% Benchmark Parameter - ———————-—---————
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Param.W = interval (-width,width);

o

% Algorithm Settings ————-----""""""""--———
% tightend set of admissible control inputs

Opts.U_ = interval(-18,68);

% number of time steps and optimization horizon
Opts.N = 5;

Opts.tOpt = 9;

% weighting matrices for the optmial control problem
Opts.Q = diag([100,1]);

Opts.R = 0.9;

% weigthing matrices for the tracking controller
Opts.Qlgr = diag([1;1]);

Opts.Rlgr = 100;

% terminal region

A = [-1.0000 0;1.0000 0;30.0000 -1.0000;66.6526 —-4.8603;-66.6526 4.8603];
b = [0.3000;0.0620;11.8400;65.0000;15.0000];

Opts.termReg = mptPolytope (A,Db);

% additional settings

Opts.tComp = 0.54;

Opts.alpha = 0.1;

Opts.maxIter = 50;

Opts.reachSteps = 1;

% Control Algorithm —-—-———-"--""""""""""“""""“"“"—"—~"—~—~—(—(—(—(
% execute control algorithm
res = reachsetMPC ('’ stirredTankReactor’,Param,Opts);

% Visualization ————=--------————-mm

figure; hold on; box on

plot (Opts.termReqg, [1,2],’FaceColor’, [100 182 100]./255, ...
"EdgeColor’,’none’,’FaceAlpha’,0.8,’Filled’,true);

plotReach(res, [1,2],[.75 .75 .751);

plotReachTimePoint (res, [1,2],'b");

plotSimulation(res, [1,2],’r’,’LineWidth’,1.5);

xlabel (C_A [mol/1]1");

yvlabel (T [K]");

x1im([-0.35,01);

ylim([-33,-101);
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6.5 Example Maneuver Automaton

In this section we present a code example that demonstrates how a maneuver automaton for the
autonomous car benchmark in Sec. can be constructed and applied online to solve a Common-
Road scenario (see Sec.[L.)). The generated plot is shown in Fig.[23] and the code for the example
is implemented in the file /ezamples/manevverAutomaton/example_maneuverAutomaton_car2.m

in the AROC toolbox.
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Figure 23: Plot generated by the maneuver automaton code example in Sec. [6.5] where the
occupancy sets of the other vehicles (blue) as well as the planned trajectory (red) are visualized
for the time intervals ¢ € [0, 1]s (top), t € [2,3]s (upper middle), ¢ € [4,5]s (lower middle), and
t € [6,7]s (bottom).

o

% Generate Motion Primitives

o

% load postprocessing function
Post = @postprocessing_car;

% load system parameter

Params = param_car();

% define algorithm options
Opts = settings_genSpaceContr_car();

Opts = rmfield(Opts,’refTraj’);

% define control inputs and initial states for motion primitives

list_x0 = {[15.8773;0;0;0]1;[14.8773;0;0;0]1;[14.8773;0;0;01};
list_ul = {-1;0;0};
list_u2 = {0;-0.15:0.15:0;0.18};

% loop over all motion primitives
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primitives = {};
counter = 1;

for i = l:length(list_x0)

% define ranges for inputs and get initial state
[Ul,U2] = meshgrid(list_ul{i},list_u2{i});
% loop over the different control input combinations
for j = l:size(Ul,1)

for k = 1:size(U1,2)

% get reference trajectory by simulating the system

x0 = list_x0{i};
u = [Ul(],k); U2(J,k)];
tspan = 0:Params.tFinal/ (Opts.N+Opts.Ninter) :Params.tFinal;
fun = Q(t,x) car(x,u,zeros(4,1));

% get reference trajectory by simulating the system

[t,x] = oded5 (fun,tspan,x0);

% provide reference trajectory as an additional input argument
Opts.refTraj.x = x’;

Opts.refTraj.u = uxones(l,size(x,1)-1);

% update parameter

Params.xf = x(end, :)’;

Params.R0 = Params.R0O + (-center (Params.R0)) + x0;

% compute controller for the current motion primitive
objContr = generatorSpaceControl ('car’,Params,Opts,Post);

primitives{counter} = objContr;
counter = counter + 1;
end
end
end

% Construct Maneuver Automaton - ———————"—-—""""""""""""“"“"—"—"—"—"—"—"—"—"—"—~—~—"—(—(——(—————
% assemble input arguments

shiftFun = @shiftInitSet_car;

shiftOccFun = @shiftOccupancySet_car;

% construct maneuver automaton
MA = maneuverAutomaton (primitives, shiftFun,shiftOccFun);

o

% Online Control ——————————————————————
% load a CommonRoad traffic scenario

scenario = ’'ZAM_ Zip-1_19_T-1’";

[statObs, dynObs, x0,goalSet, lanelets] = commonroad2cora (scenario);

x0 = [x0.velocity; x0.orientation; x0.x; x0.vy];

% plan a verified trajectory with the maneuver automaton

ind = motionPlanner (MA,x0,goalSet{1l},statObs,dynObs,’Astar’);

o

% Visualization - -----—-—-—-—-—+"-——+-"H—--—--"-—--"-"-"-""-""""""" """

o

% visualize the planned trajectory for different time intervals
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figure
timeInt = {[0,1],1[2,3],104,5],106,7]};

for

end

i = l:length(timelnt)

subplot (length (timeInt),1,1);

time = timeInt{i};

visualizeCommonRoad (MA, ind, dynObs, x0, lanelets, interval (time (1l),time (2)));
x1im([-150,501);

ylim([-10,20]);
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